7,583 research outputs found

    Material Removal Mechanisms in Grinding of Mixed Oxide Ceramics

    Get PDF
    The technological basis for a cost-effective and reliable grinding process of mixed oxide ceramics requires a fundamental understanding of the prevailing grinding mechanisms to maintain surface quality and strength requirements. However, these material removal mechanisms are not yet fully understood. This paper presents an innovative quick stop device for the interruption of cut during grinding. This appropriate method allows a detailed analysis of the interactions of grains along the contact zone. The results reveal correlations between the prevailing grinding mechanisms, the tetragonal to monoclinic phase transformation of the zirconia based ceramics as well as the resulting bending strength. © 2016 The Authors. Published by Elsevier B.V

    Rationale for windshield glass system specification requirements for shuttle orbiter

    Get PDF
    A preliminary procurement specification for the space shuttle orbiter windshield pane, and some of the design considerations and rationale leading to its development are presented. The windshield designer is given the necessary methods and procedures for assuring glass pane structural integrity by proof test. These methods and procedures are fully developed for annealed and thermally tempered aluminosilicate, borosilicate, and soda lime glass and for annealed fused silica. Application of the method to chemically tempered glass is considered. Other considerations are vision requirements, protection against bird impact, hail, frost, rain, and meteoroids. The functional requirements of the windshield system during landing, ferrying, boost, space flight, and entry are included

    Fatigue life of machined components

    Get PDF
    A correlation between machining process and fatigue strength of machined components clearly exists. However, a complete picture of the knowledge on this is not readily available for practical applications. This study addresses this issue by investigating the effects of machining methods on fatigue life of commonly used materials, such as titanium alloys, steel, aluminium alloys and nickel alloys from previous literature. Effects of turning, milling, grinding and different non-conventional machining processes on fatigue strength of above-mentioned materials have been investigated in detail with correlated information. It is found that the effect of materials is not significant except steel in which phase change causes volume expansion, resulting in compressive/tensile residual stresses based on the amounts of white layers. It is very complex to identify the influence of surface roughness on the fatigue strength of machined components in the presence of residual stresses. The polishing process improves the surface roughness, but removes the surface layers that contain compressive residual stresses to decrease the fatigue strength of polished specimens. The compressive and tensile residual stresses improve and reduce fatigue strength, respectively. Grinding process induces tensile residual stresses on the machined surfaces due to high temperature generation. On the other hand, milling and turning processes induce compressive residual stresses. High temperature non-conventional machining generates a network of micro-cracks on the surfaces in addition to tensile residual stresses to subsequently reduce fatigue strength of machined components. Embedded grits of abrasive water jet machining degrade the fatigue performance of components machined by this method

    The present state of surface conditioning in cutting and grinding

    Get PDF
    All manufacturing processes have an impact on the surface layer state of a component, which in turn significantly determines the properties of parts in service. Although these effects should certainly be exploited, knowledge on the conditioning of the surfaces during the final cutting and abrasive process of metal components is still only extremely limited today. The key challenges in regard comprise the process-oriented acquisition of suitable measurement signals and their use in robust process control with regard to the surface layer conditions. By mastering these challenges, the present demands for sustainability in production on the one hand and the material requirements in terms of lightweight construction strength on the other hand can be successfully met. In this review article completely new surface conditioning approaches are presented, which originate from the Priority Program 2086 of the Deutsche Forschungsgemeinschaft (DFG)

    Methods of measuring residual stresses in components

    Get PDF
    Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments

    IN-SITU CHARACTERIZATION OF SURFACE QUALITY IN γ-TiAl AEROSPACE ALLOY MACHINING

    Get PDF
    The functional performance of critical aerospace components such as low-pressure turbine blades is highly dependent on both the material property and machining induced surface integrity. Many resources have been invested in developing novel metallic, ceramic, and composite materials, such as gamma-titanium aluminide (γ-TiAl), capable of improved product and process performance. However, while γ-TiAl is known for its excellent performance in high-temperature operating environments, it lacks the manufacturing science necessary to process them efficiently under manufacturing-specific thermomechanical regimes. Current finish machining efforts have resulted in poor surface integrity of the machined component with defects such as surface cracks, deformed lamellae, and strain hardening. This study adopted a novel in-situ high-speed characterization testbed to investigate the finish machining of titanium aluminide alloys under a dry cutting condition to address these challenges. The research findings provided insight into material response, good cutting parameter boundaries, process physics, crack initiation, and crack propagation mechanism. The workpiece sub-surface deformations were observed using a high-speed camera and optical microscope setup, providing insights into chip formation and surface morphology. Post-mortem analysis of the surface cracking modes and fracture depths estimation were recorded with the use of an upright microscope and scanning white light interferometry, In addition, a non-destructive evaluation (NDE) quality monitoring technique based on acoustic emission (AE) signals, wavelet transform, and deep neural networks (DNN) was developed to achieve a real-time total volume crack monitoring capability. This approach showed good classification accuracy of 80.83% using scalogram images, in-situ experimental data, and a VGG-19 pre-trained neural network, thereby establishing the significant potential for real-time quality monitoring in manufacturing processes. The findings from this present study set the tone for creating a digital process twin (DPT) framework capable of obtaining more aggressive yet reliable manufacturing parameters and monitoring techniques for processing turbine alloys and improving industry manufacturing performance and energy efficiency

    Relationships between LRI process parameters and impact and post-impact behaviour of stitched and unstitched NCF laminates

    Get PDF
    The general context of the development of out-of-autoclave processes in the aeronautics industry raises the question of the possible links between these new processes and impact behaviour. In this study, a Taguchi table was used in a design of experiment approach to establish possible links. The study focused on the liquid resin infusion process applied to laminates made with stitched or unstitched quadri-axial carbon Non-Crimp Fabric(NCF). On the basis of previous studies and an analysis of the literature, five process parameters were selected (stitching, curing temperature, preform position, number of highly porous media, vacuum level). The impact energy was set at 35 J in order to obtain enough residual dent depth. The parameters analysed during and after impact were: maximum displacement of the impactor, energy absorbed, permanent indentation depth, and delaminated surface. Then, compression after impact tests were performed and the corresponding average stress was measured. The interactions found by statistical analysis show a very high sensitivity to stitching, which was, of course, expected. A very significant influence of curing temperature and a significant influence of preform position were also found on the permanent indentation depth and a physical explanation is provided. Globally, it was demonstrated that the resin infusion process itself did not influence the impact behaviour
    corecore