1,810 research outputs found

    QoS Routing Solutions for Mobile Ad Hoc Network

    Get PDF

    CapEst: A Measurement-based Approach to Estimating Link Capacity in Wireless Networks

    Full text link
    Estimating link capacity in a wireless network is a complex task because the available capacity at a link is a function of not only the current arrival rate at that link, but also of the arrival rate at links which interfere with that link as well as of the nature of interference between these links. Models which accurately characterize this dependence are either too computationally complex to be useful or lack accuracy. Further, they have a high implementation overhead and make restrictive assumptions, which makes them inapplicable to real networks. In this paper, we propose CapEst, a general, simple yet accurate, measurement-based approach to estimating link capacity in a wireless network. To be computationally light, CapEst allows inaccuracy in estimation; however, using measurements, it can correct this inaccuracy in an iterative fashion and converge to the correct estimate. Our evaluation shows that CapEst always converged to within 5% of the correct value in less than 18 iterations. CapEst is model-independent, hence, is applicable to any MAC/PHY layer and works with auto-rate adaptation. Moreover, it has a low implementation overhead, can be used with any application which requires an estimate of residual capacity on a wireless link and can be implemented completely at the network layer without any support from the underlying chipset

    Multipath routing and QoS provisioning in mobile ad hoc networks

    Get PDF
    PhDA Mobile Ad Hoc Networks (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without utilizing any fixed based-station infrastructure and centralized management. Each mobile node in the network acts as both a host generating flows or being destination of flows and a router forwarding flows directed to other nodes. Future applications of MANETs are expected to be based on all-IP architecture and be capable of carrying multitude real-time multimedia applications such as voice and video as well as data. It is very necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes an on-demand Node-Disjoint Multipath Routing protocol (NDMR) with low broadcast redundancy. Multipath routing allows the establishment of multiple paths between a single source and single destination node. It is also beneficial to avoid traffic congestion and frequent link breaks in communication because of the mobility of nodes. The important components of the protocol, such as path accumulation, decreasing routing overhead and selecting node-disjoint paths, are explained. Because the new protocol significantly reduces the total number of Route Request packets, this results in an increased delivery ratio, smaller end-to-end delays for data packets, lower control overhead and fewer collisions of packets. Although NDMR provides node-disjoint multipath routing with low route overhead in MANETs, it is only a best-effort routing approach, which is not enough to support QoS. DiffServ is a standard approach for a more scalable way to achieve QoS in any IP network and could potentially be used to provide QoS in MANETs because it minimises the need for signalling. However, one of the biggest drawbacks of DiffServ is that the QoS provisioning is separate from the routing process. This thesis presents a Multipath QoS Routing protocol for iv supporting DiffServ (MQRD), which combines the advantages of NDMR and DiffServ. The protocol can classify network traffic into different priority levels and apply priority scheduling and queuing management mechanisms to obtain QoS guarantees

    Statistical QoS routing for IEEE 802.11 multihop ad hoc networks

    Full text link

    Review of multicast QoS routing protocols for mobile ad hoc networks

    Get PDF
    A Mobile Ad hoc NETwork (MANET) is consisting of a collection of wireless mobile nodes, which form a temporary network without relying on any existing infrastructure or centralized administration. Since the bandwidth of MANETs is limited and shared between the participating nodes in the network, it is important to efficiently utilize the network bandwidth. Multicasting can minimize the link bandwidth consumption and reduce the communication cost by sending the same data to multiple participants. Multicast service is critical for applications that need collaboration of team of users. Multicasting in MANETs becomes a hot research area due to the increasing popularity of group communication applications such as video conferencing and interactive television. Recently, multimedia and group-oriented computing gains more popularity for users of ad hoc networks. So, effective Quality of Service (QoS) multicasting protocol plays significant role in MANETs. In this paper, we are presenting an overview of set of the most recent QoS multicast routing protocols that have been proposed in order to provide the researchers with a clear view of what has been done in this field

    The MobyDick Project: A Mobile Heterogeneous All-IP Architecture

    Get PDF
    Proceedings of Advanced Technologies, Applications and Market Strategies for 3G (ATAMS 2001). Cracow, Poland: 17-20 June, 2001.This paper presents the current stage of an IP-based architecture for heterogeneous environments, covering UMTS-like W-CDMA wireless access technology, wireless and wired LANs, that is being developed under the aegis of the IST Moby Dick project. This architecture treats all transmission capabilities as basic physical and data-link layers, and attempts to replace all higher-level tasks by IP-based strategies. The proposed architecture incorporates aspects of mobile-IPv6, fast handover, AAA-control, and Quality of Service. The architecture allows for an optimised control on the radio link layer resources. The Moby dick architecture is currently under refinement for implementation on field trials. The services planned for trials are data transfer and voice-over-IP.Publicad
    corecore