676 research outputs found

    PDANet: Pyramid Density-aware Attention Net for Accurate Crowd Counting

    Full text link
    Crowd counting, i.e., estimating the number of people in a crowded area, has attracted much interest in the research community. Although many attempts have been reported, crowd counting remains an open real-world problem due to the vast scale variations in crowd density within the interested area, and severe occlusion among the crowd. In this paper, we propose a novel Pyramid Density-Aware Attention-based network, abbreviated as PDANet, that leverages the attention, pyramid scale feature and two branch decoder modules for density-aware crowd counting. The PDANet utilizes these modules to extract different scale features, focus on the relevant information, and suppress the misleading ones. We also address the variation of crowdedness levels among different images with an exclusive Density-Aware Decoder (DAD). For this purpose, a classifier evaluates the density level of the input features and then passes them to the corresponding high and low crowded DAD modules. Finally, we generate an overall density map by considering the summation of low and high crowded density maps as spatial attention. Meanwhile, we employ two losses to create a precise density map for the input scene. Extensive evaluations conducted on the challenging benchmark datasets well demonstrate the superior performance of the proposed PDANet in terms of the accuracy of counting and generated density maps over the well-known state of the arts

    Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray

    Get PDF
    Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper is to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances made in making accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. 5247 Bacterial, viral and normal chest x-rays images underwent preprocessing techniques and the modified images were trained for the transfer learning based classification task. In this work, the authors have reported three schemes of classifications: normal vs pneumonia, bacterial vs viral pneumonia and normal, bacterial and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3% respectively. This is the highest accuracy in any scheme than the accuracies reported in the literature. Therefore, the proposed study can be useful in faster-diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.Comment: 13 Figures, 5 tables. arXiv admin note: text overlap with arXiv:2003.1314

    Resiliency in Deep Convolutional Neural Networks

    Get PDF
    The enormous success and popularity of deep convolutional neural networks for object detection has prompted their deployment in various real-world applications. However, their performance in the presence of hardware faults or damage that could occur in the field has not been studied. This thesis explores the resiliency of six popular network architectures for image classification, AlexNet, VGG16, ResNet, GoogleNet, SqueezeNet and YOLO9000, when subjected to various degrees of failures. We introduce failures in a deep network by dropping a percentage of weights at each layer. We then assess the effects of these failures on classification performance. We find the fitness of the weights and then dropped from least fit to most fit weights. Finally, we determine the ability of the network to self-heal and recover its performance by retraining its healthy portions after partial damage. We try different methods to re-train the healthy portion by varying the optimizer. We also try to find the time and resources required for re-training. We also reduce the number of parameters in GoogleNet, VGG16 to the size of SqueezeNet and re-trained with varying percentage of dataset. This can be used as a network pruning method

    Advancements in Image Classification using Convolutional Neural Network

    Full text link
    Convolutional Neural Network (CNN) is the state-of-the-art for image classification task. Here we have briefly discussed different components of CNN. In this paper, We have explained different CNN architectures for image classification. Through this paper, we have shown advancements in CNN from LeNet-5 to latest SENet model. We have discussed the model description and training details of each model. We have also drawn a comparison among those models.Comment: 9 pages, 15 figures, 3 Tables. Submitted to 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks(ICRCICN 2018

    Attending Category Disentangled Global Context for Image Classification

    Full text link
    In this paper, we propose a general framework for image classification using the attention mechanism and global context, which could incorporate with various network architectures to improve their performance. To investigate the capability of the global context, we compare four mathematical models and observe the global context encoded in the category disentangled conditional generative model could give more guidance as "know what is task irrelevant will also know what is relevant". Based on this observation, we define a novel Category Disentangled Global Context (CDGC) and devise a deep network to obtain it. By attending CDGC, the baseline networks could identify the objects of interest more accurately, thus improving the performance. We apply the framework to many different network architectures and compare with the state-of-the-art on four publicly available datasets. Extensive results validate the effectiveness and superiority of our approach. Code will be made public upon paper acceptance.Comment: Under revie
    • …
    corecore