33,201 research outputs found

    Efficient Residual Dense Block Search for Image Super-Resolution

    Full text link
    Although remarkable progress has been made on single image super-resolution due to the revival of deep convolutional neural networks, deep learning methods are confronted with the challenges of computation and memory consumption in practice, especially for mobile devices. Focusing on this issue, we propose an efficient residual dense block search algorithm with multiple objectives to hunt for fast, lightweight and accurate networks for image super-resolution. Firstly, to accelerate super-resolution network, we exploit the variation of feature scale adequately with the proposed efficient residual dense blocks. In the proposed evolutionary algorithm, the locations of pooling and upsampling operator are searched automatically. Secondly, network architecture is evolved with the guidance of block credits to acquire accurate super-resolution network. The block credit reflects the effect of current block and is earned during model evaluation process. It guides the evolution by weighing the sampling probability of mutation to favor admirable blocks. Extensive experimental results demonstrate the effectiveness of the proposed searching method and the found efficient super-resolution models achieve better performance than the state-of-the-art methods with limited number of parameters and FLOPs

    A Comprehensive Review of Deep Learning-based Single Image Super-resolution

    Get PDF
    Image super-resolution (SR) is one of the vital image processing methods that improve the resolution of an image in the field of computer vision. In the last two decades, significant progress has been made in the field of super-resolution, especially by utilizing deep learning methods. This survey is an effort to provide a detailed survey of recent progress in single-image super-resolution in the perspective of deep learning while also informing about the initial classical methods used for image super-resolution. The survey classifies the image SR methods into four categories, i.e., classical methods, supervised learning-based methods, unsupervised learning-based methods, and domain-specific SR methods. We also introduce the problem of SR to provide intuition about image quality metrics, available reference datasets, and SR challenges. Deep learning-based approaches of SR are evaluated using a reference dataset. Some of the reviewed state-of-the-art image SR methods include the enhanced deep SR network (EDSR), cycle-in-cycle GAN (CinCGAN), multiscale residual network (MSRN), meta residual dense network (Meta-RDN), recurrent back-projection network (RBPN), second-order attention network (SAN), SR feedback network (SRFBN) and the wavelet-based residual attention network (WRAN). Finally, this survey is concluded with future directions and trends in SR and open problems in SR to be addressed by the researchers.Comment: 56 Pages, 11 Figures, 5 Table

    Unsupervised MRI Super-Resolution Using Deep External Learning and Guided Residual Dense Network with Multimodal Image Priors

    Full text link
    Deep learning techniques have led to state-of-the-art single image super-resolution (SISR) with natural images. Pairs of high-resolution (HR) and low-resolution (LR) images are used to train the deep learning model (mapping function). These techniques have also been applied to medical image super-resolution (SR). Compared with natural images, medical images have several unique characteristics. First, there are no HR images for training in real clinical applications because of the limitations of imaging systems and clinical requirements. Second, other modal HR images are available (e.g., HR T1-weighted images are available for enhancing LR T2-weighted images). In this paper, we propose an unsupervised SISR technique based on simple prior knowledge of the human anatomy; this technique does not require HR images for training. Furthermore, we present a guided residual dense network, which incorporates a residual dense network with a guided deep convolutional neural network for enhancing the resolution of LR images by referring to different HR images of the same subject. Experiments on a publicly available brain MRI database showed that our proposed method achieves better performance than the state-of-the-art methods.Comment: 10 pages, 3 figure

    Multi-scale residual hierarchical dense networks for single image super-resolution

    Get PDF
    Single image super-resolution is known to be an ill-posed problem, which has been studied for decades. With the developments of deep convolutional neural networks, the CNN-based single image super-resolution methods have greatly improved the quality of the generated high-resolution images. However, it is difficult for image super-resolution to make full use of the relationship between pixels in low-resolution images. To address this issue, we propose a novel multi-scale residual hierarchical dense network, which tries to find the dependencies in multi-level and multi-scale features. Specially, we apply the atrous spatial pyramid pooling, which concatenates multiple atrous convolutions with different dilation rates, and design a residual hierarchical dense structure for single image super-resolution. The atrous-spatial pyramid-pooling module is used for learning the relationship of features at multiple scales; while the residual hierarchical dense structure, which consists of several hierarchical dense blocks with skip connections, aims to adaptively detect key information from multi-level features. Meanwhile, dense features from different groups are connected in a dense approach by hierarchical dense blocks, which can adequately extract local multi-level features. Extensive experiments on benchmark datasets illustrate the superiority of our proposed method compared with state-of-the-art methods. The super-resolution results on benchmark datasets of our method can be downloaded from https://github.com/Rainyfish/MS-RHDN, and the source code will be released upon acceptance of the paper

    Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network

    Full text link
    The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and use different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) and a self-assembled (oil and gas storage tank) satellite dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.Comment: This paper contains 27 pages and accepted for publication in MDPI remote sensing journal. GitHub Repository: https://github.com/Jakaria08/EESRGAN (Implementation

    Video and Image Super-Resolution via Deep Learning with Attention Mechanism

    Get PDF
    Image demosaicing, image super-resolution and video super-resolution are three important tasks in color imaging pipeline. Demosaicing deals with the recovery of missing color information and generation of full-resolution color images from so-called Color filter Array (CFA) such as Bayer pattern. Image super-resolution aims at increasing the spatial resolution and enhance important structures (e.g., edges and textures) in super-resolved images. Both spatial and temporal dependency are important to the task of video super-resolution, which has received increasingly more attention in recent years. Traditional solutions to these three low-level vision tasks lack generalization capability especially for real-world data. Recently, deep learning methods have achieved great success in vision problems including image demosaicing and image/video super-resolution. Conceptually similar to adaptation in model-based approaches, attention has received increasing more usage in deep learning recently. As a tool to reallocate limited computational resources based on the importance of informative components, attention mechanism which includes channel attention, spatial attention, non-local attention, etc. has found successful applications in both highlevel and low-level vision tasks. However, to the best of our knowledge, 1) most approaches independently studied super-resolution and demosaicing; little is known about the potential benefit of formulating a joint demosaicing and super-resolution (JDSR) problem; 2) attention mechanism has not been studied for spectral channels of color images in the open literature; 3) current approaches for video super-resolution implement deformable convolution based frame alignment methods and naive spatial attention mechanism. How to exploit attention mechanism in spectral and temporal domains sets up the stage for the research in this dissertation. In this dissertation, we conduct a systematic study about those two issues and make the following contributions: 1) we propose a spatial color attention network (SCAN) designed to jointly exploit the spatial and spectral dependency within color images for single image super-resolution (SISR) problem. We present a spatial color attention module that calibrates important color information for individual color components from output feature maps of residual groups. Experimental results have shown that SCAN has achieved superior performance in terms of both subjective and objective qualities on the NTIRE2019 dataset; 2) we propose two competing end-to-end joint optimization solutions to the JDSR problem: Densely-Connected Squeeze-and-Excitation Residual Network (DSERN) vs. Residual-Dense Squeeze-and-Excitation Network (RDSEN). Experimental results have shown that an enhanced design RDSEN can significantly improve both subjective and objective performance over DSERN; 3) we propose a novel deep learning based framework, Deformable Kernel Spatial Attention Network (DKSAN) to super-resolve videos with a scale factor as large as 16 (the extreme SR situation). Thanks to newly designed Deformable Kernel Convolution Alignment (DKC Align) and Deformable Kernel Spatial Attention (DKSA) modules, DKSAN can get both better subjective and objective results when compared with the existing state-of-the-art approach enhanced deformable convolutional network (EDVR)
    • …
    corecore