16,666 research outputs found

    A Weighted Correlation Index for Rankings with Ties

    Full text link
    Understanding the correlation between two different scores for the same set of items is a common problem in information retrieval, and the most commonly used statistics that quantifies this correlation is Kendall's τ\tau. However, the standard definition fails to capture that discordances between items with high rank are more important than those between items with low rank. Recently, a new measure of correlation based on average precision has been proposed to solve this problem, but like many alternative proposals in the literature it assumes that there are no ties in the scores. This is a major deficiency in a number of contexts, and in particular while comparing centrality scores on large graphs, as the obvious baseline, indegree, has a very large number of ties in web and social graphs. We propose to extend Kendall's definition in a natural way to take into account weights in the presence of ties. We prove a number of interesting mathematical properties of our generalization and describe an O(nlogn)O(n\log n) algorithm for its computation. We also validate the usefulness of our weighted measure of correlation using experimental data

    Tackling information asymmetry in networks: a new entropy-based ranking index

    Full text link
    Information is a valuable asset for agents in socio-economic systems, a significant part of the information being entailed into the very network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant systemic properties (e.g. the risk of financial contagion in a network of liabilities), agents capable of providing a better estimate of (otherwise) unaccessible network properties, ultimately have a competitive advantage. In this paper, we address for the first time the issue of quantifying the information asymmetry arising from the network topology. To this aim, we define a novel index - InfoRank - intended to measure the quality of the information possessed by each node, computing the Shannon entropy of the ensemble conditioned on the node-specific information. Further, we test the performance of our novel ranking procedure in terms of the reconstruction accuracy of the (unaccessible) network structure and show that it outperforms other popular centrality measures in identifying the "most informative" nodes. Finally, we discuss the socio-economic implications of network information asymmetry.Comment: 12 pages, 8 figure

    Medial/skeletal linking structures for multi-region configurations

    Full text link
    We consider a generic configuration of regions, consisting of a collection of distinct compact regions {Ωi}\{\Omega_i\} in Rn+1\mathbb{R}^{n+1} which may be either smooth regions disjoint from the others or regions which meet on their piecewise smooth boundaries Bi\mathcal{B}_i in a generic way. We introduce a skeletal linking structure for the collection of regions which simultaneously captures the regions' individual shapes and geometric properties as well as the "positional geometry" of the collection. The linking structure extends in a minimal way the individual "skeletal structures" on each of the regions, allowing us to significantly extend the mathematical methods introduced for single regions to the configuration. We prove for a generic configuration of regions the existence of a special type of Blum linking structure which builds upon the Blum medial axes of the individual regions. This requires proving several transversality theorems for certain associated "multi-distance" and "height-distance" functions for such configurations. We show that by relaxing the conditions on the Blum linking structures we obtain the more general class of skeletal linking structures which still capture the geometric properties. In addition to yielding geometric invariants which capture the shapes and geometry of individual regions, the linking structures are used to define invariants which measure positional properties of the configuration such as: measures of relative closeness of neighboring regions and relative significance of the individual regions for the configuration. These invariants, which are computed by formulas involving "skeletal linking integrals" on the internal skeletal structures, are then used to construct a "tiered linking graph," which identifies subconfigurations and provides a hierarchical ordering of the regions.Comment: 135 pages, 36 figures. Version to appear in Memoirs of the Amer. Math. So

    Educational commitment and social networking: The power of informal networks

    Full text link
    The lack of an engaging pedagogy and the highly competitive atmosphere in introductory science courses tend to discourage students from pursuing science, technology, engineering, and mathematics (STEM) majors. Once in a STEM field, academic and social integration has been long thought to be important for students' persistence. Yet, it is rarely investigated. In particular, the relative impact of in-class and out-of-class interactions remains an open issue. Here, we demonstrate that, surprisingly, for students whose grades fall in the "middle of the pack," the out-of-class network is the most significant predictor of persistence. To do so, we use logistic regression combined with Akaike's information criterion to assess in- and out-of-class networks, grades, and other factors. For students with grades at the very top (and bottom), final grade, unsurprisingly, is the best predictor of persistence---these students are likely already committed (or simply restricted from continuing) so they persist (or drop out). For intermediate grades, though, only out-of-class closeness---a measure of one's immersion in the network---helps predict persistence. This does not negate the need for in-class ties. However, it suggests that, in this cohort, only students that get past the convenient in-class interactions and start forming strong bonds outside of class are or become committed to their studies. Since many students are lost through attrition, our results suggest practical routes for increasing students' persistence in STEM majors.Comment: 12 pages, 2 figures, 8 tables, 6 pages of Supplementary Material

    Pranab Kumar Sen: Life and works

    Full text link
    In this article, we describe briefly the highlights and various accomplishments in the personal as well as the academic life of Professor Pranab Kumar Sen.Comment: Published in at http://dx.doi.org/10.1214/193940307000000013 the IMS Collections (http://www.imstat.org/publications/imscollections.htm) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore