821 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Upscaling energy control from building to districts: current limitations and future perspectives

    Get PDF
    Due to the complexity and increasing decentralisation of the energy infrastructure, as well as growing penetration of renewable generation and proliferation of energy prosumers, the way in which energy consumption in buildings is managed must change. Buildings need to be considered as active participants in a complex and wider district-level energy landscape. To achieve this, the authors argue the need for a new generation of energy control systems capable of adapting to near real-time environmental conditions while maximising the use of renewables and minimising energy demand within a district environment. This will be enabled by cloud-based demand-response strategies through advanced data analytics and optimisation, underpinned by semantic data models as demonstrated by the Computational Urban Sustainability Platform, CUSP, prototype presented in this paper. The growing popularity of time of use tariffs and smart, IoT connected devices offer opportunities for Energy Service Companies, ESCo’s, to play a significant role in this new energy landscape. They could provide energy management and cost savings for adaptable users, while meeting energy and CO2 reduction targets. The paper provides a critical review and agenda setting perspective for energy management in buildings and beyond

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    Reinforced Demand Side Management for Educational Institution with incorporation of User’s Comfort

    Get PDF
    Soaring energy demand and the establishment of various trends in the energy market have paved the way for developing demand-side management (DSM) from the consumer side. This paper proposes a reinforced DSM (RDSM) approach that uses an enhanced binary gray wolf optimization algorithm (EBGWO) that benefits the consumer premises with load scheduling, and peak demand reduction. To date, DSM research has been carried out for residential, commercial and industrial loads, whereas DSM approaches for educational loads have been less studied. The institution load also consumes much utility energy during peak hours, making institutional consumers pay a high amount of cost for energy consumption during peak hours. The proposed objective is to reduce the total electricity cost and to improve the operating efficiency of the entire load profile at an educational institution. The proposed architecture integrates the solar PV (SPV) generation that supplies the user-comfort loads during peak operating hours. User comfort is determined with a metric termed the user comfort index (UCI). The novelty of the proposed work is highlighted by modeling a separate class of loads for temperature-controlled air conditioners (AC), supplying the user comfort loads from SPV generation and determining user comfort with percentage UCI. The improved transfer function used in the proposed EBGWO algorithm performs faster in optimizing nonlinear objective problems. The electricity price in the peak hours is high compared to the offpeak hours. The proposed EBGWO algorithm shift and schedules the loads from the peak hours to off-peak hours, and incorporating SPV in satisfying the user comfort loads aids in reducing the power consumption from the utility during peak hours. Thus, the proposed EBGWO algorithm greatly helps the consumer side decrease the peak-to-average ratio (PAR), improve user comfort significantly, reduce the peak demand, and save the institution’s electricity cost by USD 653.046.publishedVersio

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    Microgrids:The Path to Sustainability

    Get PDF

    Energy Management of Distributed Generation Systems

    Get PDF
    The book contains 10 chapters, and it is divided into four sections. The first section includes three chapters, providing an overview of Energy Management of Distributed Systems. It outlines typical concepts, such as Demand-Side Management, Demand Response, Distributed, and Hierarchical Control for Smart Micro-Grids. The second section contains three chapters and presents different control algorithms, software architectures, and simulation tools dedicated to Energy Management Systems. In the third section, the importance and the role of energy storage technology in a Distribution System, describing and comparing different types of energy storage systems, is shown. The fourth section shows how to identify and address potential threats for a Home Energy Management System. Finally, the fifth section discusses about Economical Optimization of Operational Cost for Micro-Grids, pointing out the effect of renewable energy sources, active loads, and energy storage systems on economic operation

    Microgrids

    Get PDF
    Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems

    Energy management for user’s thermal and power needs:A survey

    Get PDF
    The increasing world energy consumption, the diversity in energy sources, and the pressing environmental goals have made the energy supply–demand balance a major challenge. Additionally, as reducing energy costs is a crucial target in the short term, while sustainability is essential in the long term, the challenge is twofold and contains clashing goals. A more sustainable system and end-users’ behavior can be promoted by offering economic incentives to manage energy use, while saving on energy bills. In this paper, we survey the state-of-the-art in energy management systems for operation scheduling of distributed energy resources and satisfying end-user’s electrical and thermal demands. We address questions such as: how can the energy management problem be formulated? Which are the most common optimization methods and how to deal with forecast uncertainties? Quantitatively, what kind of improvements can be obtained? We provide a novel overview of concepts, models, techniques, and potential economic and emission savings to enhance energy management systems design
    corecore