7,870 research outputs found

    Fantasia on a Theme of Purpose: Using a Music-Guided Scribble Technique to Support Meaning-Making in Older Adult Retiree Musicians

    Get PDF
    Within the population of older adults, overall well-being corresponds with the ability to self-actualize and seek meaning, but age-related changes combined with ageism and isolation can negatively impact this capacity to maintain a sense of purpose, especially following retirement. It may be that retired musicians are especially vulnerable to this experience later in life due to a loss of the primary method of creative engagement and community that is facilitated by musical performance in a group setting. Integrating phenomenological and ethnographic approaches, this study utilized a qualitative design to understand how music-guided art-making incorporating the scribble technique could support a sense of purpose among older adult retiree musicians. In an art-based intervention that collected art and interview data, participants responded to self-selected music with a variety of fluid and resistive drawing materials categorized as Media Dimension Variables (MDV). Data analysis was executed in conjunction with theories of Acceptance and Commitment Therapy (ACT) and the Expressive Therapies Continuum (ETC). Results obtained via thematic analysis suggested that the intervention facilitated access to creative intentionality in support of a sense of purpose. The process of self-selecting music that was rich with personal significance provided an optimal frame of reference in a novel art experiential that engaged individual strengths, values, and expertise. Responding to music in real-time with a kinesthetically-focused drawing technique presented a non-threatening approach to visual composition; the spontaneity in this process also offered opportunities for self-discovery and contact with the present moment

    “REAL COLLABORATION IS EMPOWERING:” FACILITATORS, BARRIERS, AND BENEFITS OF A COMMUNITY-SCHOOL PARTNERSHIP IN AN INDIGENOUS COMMUNITY

    Get PDF
    Culturally responsive community-school partnerships can help support students\u27 well-being, and the facilitators, barriers, and benefits of community-school partnerships in Indigenous communities may be unique due to historic and contemporary sociopolitical influences. The aims of the current study were to explore facilitators, barriers, and benefits of community-school partnerships in Indigenous communities in order to better support student well-being. Project SELA is an existing partnership between a community and school on a reservation, and individuals who have been part of this project participated in the current study. Ten participants shared their experiences and perspectives of community-school partnerships in Indigenous communities through semi-structured interviews. Data were analyzed using constant comparative analysis, and trustworthiness and credibility were established using triangulation, member checking, and reflexivity. Results included three themes reflecting participants\u27 perspectives of factors that contribute to tension in relationships, authentic and sustainable relationships, and supportive school environments. The discussion of results also includes implications for school psychologists and other educators, limitations, and future directions

    A Cooperative Resilience-Oriented Planning Framework for Integrated Distribution Energy Systems and Multi-Carrier Energy Microgrids Considering Energy Trading

    Get PDF
    Integrated distribution systems (IDSs) and multi-carrier energy microgrids (MCEMs) can play a crucial role in enhancing distribution energy systems’ overall efficiency and flexibility. By cascading energy usage and cooperating through energy trading, IDSs and MCEMs can reduce overall system costs and provide more flexibility for system operators. Adding resilience to the planning problem of IDSs can reduce planning costs in the long term, as proactive preparedness is key to coping with high-impact rare (HR) events. Adding resilience to the planning problem of IDSs can reduce the planning costs in the long term since proactive preparedness is a key necessity to cope with high-impact rare (HR) events. This paper proposes a resilience-oriented stochastic tri-level and two-stage cooperative expansion planning of IDSs and MCEMs, considering energy trading between IDSs and MCEMs. The first stage comprises two levels; the first level minimizes the investment and operation costs of IDSs and MCEMs, while the second level desires to maximize the energy exchange profit for MCEMs and thus reduce the overall costs. The second stage includes the third level problem involving two objective functions: resilience cost minimization and resilience index (RI) maximization. The multi-objective problem in the second stage is converted into a single-objective problem using the min–max regret method. The DC and AC configurations for the power distribution system (PDS) and power microgrids (PMGs) are studied to identify the optimal configuration of these networks in the expansion planning problem. A new framework is proposed based on an aggregator-agent splitting solution using the aggregator coupling coordinator unit (ACC) responsible for coordinating IDNs and MCEMs. The studied large-scale complex optimization problem is efficiently solved computationally by introducing a combined adaptive dynamic programming (ADP) and linearized alternating direction method of multipliers with parallel splitting (LADMMPSAP) algorithm. Three cases are studied to demonstrate the effectiveness of the proposed model and method. The results depict that MCEMs help reduce expansion planning costs and improve the system’s resilience. Adding resilience to the expansion planning problem enhances the resilience of the whole system and simultaneously reduces the costs by 2.7%. The expansion planning costs for the AC and DC configuration are close, and the AC is the optimal choice in all case studies. By increasing the planning horizon from 5 to 10 years, DC will be the optimal solution since network reinforcement costs and power losses are significantly lower.<br/

    An examination of the verbal behaviour of intergroup discrimination

    Get PDF
    This thesis examined relationships between psychological flexibility, psychological inflexibility, prejudicial attitudes, and dehumanization across three cross-sectional studies with an additional proposed experimental study. Psychological flexibility refers to mindful attention to the present moment, willing acceptance of private experiences, and engaging in behaviours congruent with one’s freely chosen values. Inflexibility, on the other hand, indicates a tendency to suppress unwanted thoughts and emotions, entanglement with one’s thoughts, and rigid behavioural patterns. Study 1 found limited correlations between inflexibility and sexism, racism, homonegativity, and dehumanization. Study 2 demonstrated more consistent positive associations between inflexibility and prejudice. And Study 3 controlled for right-wing authoritarianism and social dominance orientation, finding inflexibility predicted hostile sexism and racism beyond these factors. While showing some relationships, particularly with sexism and racism, psychological inflexibility did not consistently correlate with varied prejudices across studies. The proposed randomized controlled trial aims to evaluate an Acceptance and Commitment Therapy intervention to reduce sexism through enhanced psychological flexibility. Overall, findings provide mixed support for the utility of flexibility-based skills in addressing complex societal prejudices. Research should continue examining flexibility integrated with socio-cultural approaches to promote equity

    “You turn the tap on, the water's there, and you just think everything's fine”: a mixed methods approach to understanding public perceptions of groundwater management in Baton Rouge, Louisiana, USA

    Get PDF
    In Louisiana's Capital Area Groundwater Conservation District (CAGWCD), extensive groundwater withdrawals from the Southern Hills Aquifer System have begun to accelerate the infiltration of saltwater into the aquifer's freshwater sands. This accelerated saltwater intrusion has the potential to reduce the amount of groundwater available for public consumption and other industrial and agricultural uses throughout the region. In response to this threat, the Capital Area Ground Water Conservation Commission has begun development of a long-term strategic plan to achieve and maintain sustainable and resilient groundwater withdrawals from the aquifer system. The development of the strategic plan includes an assessment of public attitudes regarding groundwater and groundwater management in the CAGWCD. This paper presents the results of mixed methods public participatory research to evaluate current and historical views and attitudes around groundwater quality, quantity, and cost in the CAGWCD. The mixed methods approach used in this research employed a sequential explanatory design model consisting of two phases. The first phase involved the implementation of an internet-based survey, followed by a qualitative phase aimed at explaining and enhancing the quantitative results. The qualitative phase employed a combination of one-on-one interviews and focus groups. The research found that the primary governance obstacle that decision-makers may face in managing groundwater is a broad lack of public awareness of groundwater and groundwater issues in the CAGWCD. Despite the criticality of over-pumping and saltwater intrusion into the aquifer system, survey research and subsequent interviews and focus groups have shown that the public is largely unaware of these issues. This research also found a general lack of trust in both industry and government to manage groundwater issues and highlighted the need for groundwater management efforts to be led by unbiased, trusted institutions

    Digital twin modeling method based on IFC standards for building construction processes

    Get PDF
    Intelligent construction is a necessary way to improve the traditional construction method, and digital twin can be a crucial technology to promote intelligent construction. However, the construction field currently needs a unified method to build a standardized and universally applicable digital twin model, which is incredibly challenging in construction. Therefore, this paper proposes a general method to construct a digital twin construction process model based on the Industry Foundation Classes (IFC) standard, aiming to realize real-time monitoring, control, and visualization management of the construction site. The method constructs a digital twin fusion model from three levels: geometric model, resource model, and behavioral model by establishing an IFC semantic model of the construction process, storing the fusion model data and the construction site data into a database, and completing the dynamic interaction of the twin data in the database. At the same time, the digital twin platform is developed to realize the visualization and control of the construction site. Combined with practical cases and analysis, the implementation effect of the method is shown and verified. The results show that the method can adapt itself to different scenarios on the construction site, which is conducive to promoting application of the digital twin in the field of construction and provides a reference to the research of practicing digital twin theory and practice

    Enhancing grid-forming converters control in hybrid AC/DC microgrids using bidirectional virtual inertia support

    Get PDF
    This paper presents a new grid-forming strategy for hybrid AC/DC microgrids using bidirectional virtual inertia support designed to address weak grid conditions. The stability of hybrid AC/DC microgrids heavily relies on the AC mains frequency and the DC-link voltage, and deviations in these factors can lead to undesirable outcomes such as load curtailments and power system congestions and blackouts. This paper introduces a unique approach that leverages bidirectional virtual inertia support to enhance the stability and reliability of hybrid AC/DC microgrids under weak grid conditions. The proposed strategy employs virtual inertia as a buffer to mitigate rapid changes in DC-link voltage and AC frequency, thereby enhancing system stability margins. This strategy significantly contributes to a more stable and reliable grid operation by reducing voltage and frequency fluctuations. A standard hybrid AC/DC microgrid configuration is used to implement the bidirectional virtual inertia support, where a bidirectional interlinking converter control is adjusted to deliver inertia support to both the AC and DC subgrids. This converter utilizes the DC grid voltage and AC grid frequency as inputs, effectively managing active power balance and implementing auxiliary functions. Extensive simulations are conducted under weak grid conditions and standalone mode to validate the effectiveness of the proposed strategy. The simulation results demonstrate a remarkable improvement in frequency nadir, rate-of-change-of-frequency (RoCoF), and DC bus voltage deviation in the hybrid AC/DC microgrids. The bidirectional virtual inertia support substantially reduces voltage and frequency fluctuations, enhancing the microgrid stability and resilience. There is an improvement of over 45% and 25% in the frequency deviation and voltage deviation, respectively, achieved through implementing the proposed control strategy

    Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability

    Get PDF
    This comprehensive review paper delves into the advancements and applications of thermal energy storage (TES) in concrete. It covers the fundamental concepts of TES, delving into various storage systems, advantages, and challenges associated with the technology. The paper extensively explores the potential of concrete as a medium for thermal energy storage, analysing its properties and different storage methods. Additionally, it sheds light on the latest developments in concrete technology specifically geared towards thermal energy storage. The evaluation section discusses measurement techniques, experimental evaluations and performance metrics. Environmental and economic aspects, including sustainability and cost analysis, are thoughtfully addressed. The review concludes by underlining the significance of thermal energy storage in concrete, emphasizing its role in efficient energy management and the promotion of sustainable practices

    Enhancing grid reliability with coordination and control of distributed energy resources

    Get PDF
    The growing utilization of renewable energy resources (RES) within power systems has brought about new challenges due to the inherent uncertainty associated with RES, which makes it challenging to accurately forecast available generation. Further- more, the replacement of synchronous machines with inverter-based RES results in a reduction of power system inertia, complicating the task of maintaining a balance between generation and consumption. In this dissertation, coordinating Distributed Energy Resources (DER) is presented as a viable solution to these challenges.DERs have the potential to offer different ancillary services such as fast frequency response (FFR) when efficiently coordinated. However, the practical implementation of such services demands both effective local sensing and control at the device level and the ability to precisely estimate and predict the availability of synthetic damping from a fleet in real time. Additionally, the inherent trade-off between a fleet being available for fast frequency response while providing other ancillary services needs to be characterized. This dissertation introduces a fully decentralized, packet-based controller for a diverse range of flexible loads. This controller dynamically prioritizes and interrupts DERs to generate synthetic damping suitable for primary frequency control. Moreover, the packet-based control methodology is demonstrated to accu- rately assess the real-time availability of synthetic damping. Furthermore, spectral analysis of historical frequency regulation data is employed to establish a probabilis- tic bound on the expected synthetic damping available for primary frequency control from a fleet and the trade-off of concurrently offering secondary frequency control. It is noteworthy that coordinating a large number of DERs can potentially result in grid constraint violations. To tackle this challenge, this dissertation employs con- vex inner approximations (CIA) of the AC power flow to address the optimization problem of quantifying the capacity of a three-phase distribution feeder to accommo- date DERs. This capacity is often referred to as hosting capacity (HC). However, in this work, we consider separate limits for positive and negative DER injections at each node, ensuring that injections within these nodal limits adhere to feeder voltage and current constraints. The methodology dissects a three-phase feeder into individual phases and applies CIA-based techniques to each phase. Additionally, new approaches are introduced to modify the per-phase optimization problems to mitigate the inherent conservativeness associated with CIA methods and enhance HC. This includes selectively adjusting the per-phase impedances and proposing an iterative relaxation method for per-phase voltage bounds
    corecore