226 research outputs found

    Electron Spin for Classical Information Processing: A Brief Survey of Spin-Based Logic Devices, Gates and Circuits

    Full text link
    In electronics, information has been traditionally stored, processed and communicated using an electron's charge. This paradigm is increasingly turning out to be energy-inefficient, because movement of charge within an information-processing device invariably causes current flow and an associated dissipation. Replacing charge with the "spin" of an electron to encode information may eliminate much of this dissipation and lead to more energy-efficient "green electronics". This realization has spurred significant research in spintronic devices and circuits where spin either directly acts as the physical variable for hosting information or augments the role of charge. In this review article, we discuss and elucidate some of these ideas, and highlight their strengths and weaknesses. Many of them can potentially reduce energy dissipation significantly, but unfortunately are error-prone and unreliable. Moreover, there are serious obstacles to their technological implementation that may be difficult to overcome in the near term. This review addresses three constructs: (1) single devices or binary switches that can be constituents of Boolean logic gates for digital information processing, (2) complete gates that are capable of performing specific Boolean logic operations, and (3) combinational circuits or architectures (equivalent to many gates working in unison) that are capable of performing universal computation.Comment: Topical Revie

    Master Equation Emulation and Coherence Preservation with Classical Control of a Superconducting Qubit

    Full text link
    Open quantum systems are a topic of intense theoretical research. The use of master equations to model a system's evolution subject to an interaction with an external environment is one of the most successful theoretical paradigms. General experimental tools to study different open system realizations have been limited, and so it is highly desirable to develop experimental tools which emulate diverse master equation dynamics and give a way to test open systems theories. In this paper we demonstrate a systematic method for engineering specific system-environment interactions and emulating master equations of a particular form using classical stochastic noise. We also demonstrate that non-Markovian noise can be used as a resource to extend the coherence of a quantum system and counteract the adversarial effects of Markovian environments.Comment: 14 pages, 11 figure

    Energy Shaping of Underactuated Systems via Interconnection and Damping Assignment Passivity-Based Control with Applications to Planar Biped Robots

    Get PDF
    The sought goal of this thesis is to show that total energy shaping is an effective and versatile tool to control underactuated mechanical systems. The performance of several approaches, rooted in the port-Hamiltonian formalism, are analyzed while tackling distinct control problems: i) equilibrium stabilization; ii) gait generation; iii) gait robustication. Firstly, a constructive solution to deal with interconnection and damping assignment passivity-based control (IDA-PBC) for underactuated two-degree-of-freedom mechanical systems is proposed. This strategy does not involve the resolution of any partial differential equation, since explicit solutions are given, while no singularities depending on generalized momenta are introduced by the controller. The methodology is applied to the stabilization of a translational oscillator with a rotational actuator system, as well as, to the gait generation for an underactuated compass-like biped robot (CBR). Then, the problem of gait generation is addressed using dissipative forces in the controller. In this sense, three distinct controllers are presented, namely simultaneous interconnection and damping assignment passivity-based control with dissipative forces, energy pumping-and-damping passivity-based control (EPD-PBC), and energy pumping-or-damping control. Finally, EPD-PBC is used to increase the robustness of the gait exhibited by the CBR over uncertainties on the initial conditions. The passivity of the system is exploited, as well as, its hybrid nature (using the hybrid zero dynamics method) to carry out the stability analysis. Besides, such an approach is applied to new gaits that are generated using IDA-PBC. Numerical case studies, comparisons, and critical discussions evaluate the performance of the proposed approaches

    Quantum Measurement and Bath Engineering for Superconducting Qubits via Multiple Parametric Couplings

    Get PDF
    Quantum computers have huge potential applications, but do not currently exist. It has already been proven that a quantum computer would outperform the best classical supercomputers in certain problems, some of which have vital connections with our daily lives. For example, quantum computers efficiently solve the prime number factoring problem, which in turn is the foundation of the RSA algorithm behind most online transactions. There is a great deal of current effort to implement quantum computers, and we have seen good progress in platforms including superconducting circuits, ion traps, and photons in cavity QED systems and spins in semiconductors. These machines include up to roughly 50 quantum bits at present, but they are not very useful as quantum errors quickly decohere the computer's state and prevent computation. These errors can be mitigated via quantum error correction at the cost of additional size and complexity. Progress in the field towards error corrected, large-scale quantum machines requires us to require new tools for controlling, coupling, and reading out qubits. In this thesis, I will focus on such explorations in superconducting circuits. In this thesis, we seek to expand the already flexible toolkit of quantum circuits by exploring the uses of parametric couplings based on third-order nonlinearities. This type of nonlinearities has only been used in quantum-limited amplifiers before, here we try to further explore their applications by creating new methods for controlling and measuring qubits that based on it. In the first experiment, we address the problem of implementing a highly efficient quantum non-demolition qubit readout. With the use of two-mode squeezed (TMS) light and combined with phase-preserving parametric amplifiers into an interferometer for dispersive qubit readout, we demonstrate a measurement scheme with a 44%\% improvement in power signal-to-noise ratio. We also investigate the back-action of the measurement scheme. In the second experiment, we create an effective chemical potential for photons with parametric system-bath coupling. In particular, we use a lossy Superconducting Nonlinear Asymmetric Inductive eLement (SNAIL) as both the bath and coupler. The bath engineering is realized by combining the multiple parametric drives and the dissipation together

    Design of robust spin-transfer torque magnetic random access memories for ultralow power high performance on-chip cache applications

    Get PDF
    Spin-transfer torque magnetic random access memories (STT-MRAMs) based on magnetic tunnel junction (MTJ) has become the leading candidate for future universal memory technology due to its potential for low power, non-volatile, high speed and extremely good endurance. However, conflicting read and write requirements exist in STT-MRAM technology because the current path during read and write operations are the same. Read and write failures of STT-MRAMs are degraded further under process variations. The focus of this dissertation is to optimize the yield of STT- MRAMs under process variations by employing device-circuit-architecture co-design techniques. A devices-to-systems simulation framework was developed to evaluate the effectiveness of the techniques proposed in this dissertation. An optimization methodology for minimizing the failure probability of 1T-1MTJ STT-MRAM bit-cell by proper selection of bit-cell configuration and access transistor sizing is also proposed. A failure mitigation technique using assistsin 1T-1MTJ STT-MRAM bit-cells is also proposed and discussed. Assist techniques proposed in this dissertation to mitigate write failures either increase the amount of current available to switch the MTJ during write or decrease the required current to switch the MTJ. These techniques achieve significant reduction in bit-cell area and write power with minimal impact on bit-cell failure probability and read power. However, the proposed write assist techniques may be less effective in scaled STT-MRAM bit-cells. Furthermore, read failures need to be overcome and hence, read assist techniques are required. It has been experimentally demonstrated that a class of materials called multiferroics can enable manipulation of magnetization using electric fields via magnetoelectric effects. A read assist technique using an MTJ structure incorporating multiferroic materials is proposed and analyzed. It was found that it is very difficult to overcome the fundamental design issues with 1T-1MTJ STT-MRAM due to the two-terminal nature of the MTJ. Hence, multi-terminal MTJ structures consisting of complementary polarized pinned layers are proposed. Analysis of the proposed MTJ structures shows significant improvement in bit-cell failures. Finally, this dissertation explores two system-level applications enabled by STT-MRAMs, and shows that device-circuit-architecture co-design of STT-MRAMs is required to fully exploit its benefits
    • …
    corecore