243 research outputs found

    Computational Complexity of Synchronization under Regular Commutative Constraints

    Full text link
    Here we study the computational complexity of the constrained synchronization problem for the class of regular commutative constraint languages. Utilizing a vector representation of regular commutative constraint languages, we give a full classification of the computational complexity of the constraint synchronization problem. Depending on the constraint language, our problem becomes PSPACE-complete, NP-complete or polynomial time solvable. In addition, we derive a polynomial time decision procedure for the complexity of the constraint synchronization problem, given some constraint automaton accepting a commutative language as input.Comment: Published in COCOON 2020 (The 26th International Computing and Combinatorics Conference); 2nd version is update of the published version and 1st version; both contain a minor error, the assumption of maximality in the NP-c and PSPACE-c results (propositions 5 & 6) is missing, and of incomparability of the vectors in main theorem; fixed in this version. See (new) discussion after main theore

    Strong inapproximability of the shortest reset word

    Full text link
    The \v{C}ern\'y conjecture states that every nn-state synchronizing automaton has a reset word of length at most (n1)2(n-1)^2. We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and complete for the DP class, and that approximating the length of the shortest reset word within a factor of O(logn)O(\log n) is NP-hard [Gerbush and Heeringa, CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly improve on these results by showing that, for every ϵ>0\epsilon>0, it is NP-hard to approximate the length of the shortest reset word within a factor of n1ϵn^{1-\epsilon}. This is essentially tight since a simple O(n)O(n)-approximation algorithm exists.Comment: extended abstract to appear in MFCS 201

    The averaging trick and the Cerny conjecture

    Full text link
    The results of several papers concerning the \v{C}ern\'y conjecture are deduced as consequences of a simple idea that I call the averaging trick. This idea is implicitly used in the literature, but no attempt was made to formalize the proof scheme axiomatically. Instead, authors axiomatized classes of automata to which it applies

    Synchronization Problems in Automata without Non-trivial Cycles

    Full text link
    We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889. Conference version was published at CIAA 2017, LNCS vol. 10329, pages 188-200, 201

    The subpower membership problem for semigroups

    Full text link
    Fix a finite semigroup SS and let a1,,ak,ba_1,\ldots,a_k, b be tuples in a direct power SnS^n. The subpower membership problem (SMP) asks whether bb can be generated by a1,,aka_1,\ldots,a_k. If SS is a finite group, then there is a folklore algorithm that decides this problem in time polynomial in nknk. For semigroups this problem always lies in PSPACE. We show that the SMP for a full transformation semigroup on 3 letters or more is actually PSPACE-complete, while on 2 letters it is in P. For commutative semigroups, we provide a dichotomy result: if a commutative semigroup SS embeds into a direct product of a Clifford semigroup and a nilpotent semigroup, then SMP(S) is in P; otherwise it is NP-complete

    Complexity of problems concerning reset words for some partial cases of automata

    Get PDF
    A word w is called a reset word for a deterministic finite automaton A if it maps all states of A to one state. A word w is called a compressing to M states for a deterministic finite automaton A if it maps all states of A to at most M states. We consider several subclasses of automata: aperiodic, D-trivial, monotonic, partially monotonic automata and automata with a zero state. For these subclasses we study the computational complexity of the following problems. Does there exist a reset word for a given automaton? Does there exist a reset word of given length for a given automaton? What is the length of the shortest reset word for a given automaton? Moreover, we consider complexity of the same problems for compressing words
    corecore