5,089 research outputs found

    Survey of smart parking systems

    Get PDF
    The large number of vehicles constantly seeking access to congested areas in cities means that finding a public parking place is often difficult and causes problems for drivers and citizens alike. In this context, strategies that guide vehicles from one point to another, looking for the most optimal path, are needed. Most contributions in the literature are routing strategies that take into account different criteria to select the optimal route required to find a parking space. This paper aims to identify the types of smart parking systems (SPS) that are available today, as well as investigate the kinds of vehicle detection techniques (VDT) they have and the algorithms or other methods they employ, in order to analyze where the development of these systems is at today. To do this, a survey of 274 publications from January 2012 to December 2019 was conducted. The survey considered four principal features: SPS types reported in the literature, the kinds of VDT used in these SPS, the algorithms or methods they implement, and the stage of development at which they are. Based on a search and extraction of results methodology, this work was able to effectively obtain the current state of the research area. In addition, the exhaustive study of the studies analyzed allowed for a discussion to be established concerning the main difficulties, as well as the gaps and open problems detected for the SPS. The results shown in this study may provide a base for future research on the subject.Fil: Diaz Ogás, Mathias Gabriel. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Fabregat Gesa, Ramon. Universidad de Girona; EspañaFil: Aciar, Silvana Vanesa. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin

    Analysis of Smart Parking System Using IOT Environment

    Get PDF
    The typical parking experience has been transformed by smart parking systems that use the Internet of Things (IoT) environment to integrate technology to improve efficiency, convenience, and sustainability. In order to monitor and manage parking spaces in real-time, this unique technique makes use of IoT devices, such as sensors, cameras, and networking technologies. As a result of the system's reliable information on parking availability, drivers may find and book parking spaces in advance, which eases traffic and reduces aggravation. Additionally, parking systems with IoT capabilities optimize resource use, lowering carbon emissions and fostering sustainability. The adoption of IoT in parking systems is a crucial step towards building smarter, more connected cities that will enhance both drivers' and parking operators' experiences with parking. There are numerous crucial elements in the process for developing a smart parking system in an IoT context. First, sensors are placed in parking places to gather up-to-the-minute occupancy information. Then, using wireless communication protocols, this data is sent to a central server or cloud computing platform. After that, a data processing and analysis module interprets the gathered data using algorithms and machine learning techniques and presents parking availability information to users via a mobile application or other user interfaces. For effective management and monitoring of parking spaces, the system also includes automated payment methods and interacts with existing infrastructure. Taken as Alternative parameters is Park Smart, Street line, Park Whiz, ParkMobile, Spot Hero. Taken as evaluation parameters is Light Sensor, CCTV coins, SMS, Cost-effectiveness, Timestamp. This demonstrates the rank of the data set Park Smart is on 1st Rank, ParkMobile is on 2nd Rank, Park Whiz is on 3rd Rank, Street line is on 4th Rank and Spot Hero is on 5th Rank. To sum up, implementing a smart parking system employing IoT technology has shown to be a potential way to deal with the problems associated with urban parking. The system increases parking efficiency, lessens traffic congestion, and enhances user experience by utilising IoT sensors, data analytics, and real-time communication. The parking scene in smart cities has the potential to change dramatically, enhancing ease and sustainability

    On the Design of Campus Parking Systems with QoS guarantees

    Get PDF
    Parking spaces are resources that can be pooled together and shared, especially when there are complementary day-time and night-time users. We answer two design questions. First, given a quality of service requirement, how many spaces should be set aside as contingency during day-time for night-time users? Next, how can we replace the first-come-first-served access method by one that aims at optimal efficiency while keeping user preferences private

    A cloud architecture to integrate a multi-agent smart parking system

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáSmart parking systems are becoming a solution to recurring issues as the number of vehicles in traffic rises in major cities, which can be related to vehicle traffic congestion, unnecessary time spent searching for parking spots, and, consequently, environmental issues. The purpose of these systems is to help drivers who are searching for available parking spaces or who want to reserve for a specified period of time, quickly and, if possible, near the desired location. In this context, there are several modules within smart parking systems that may include cyber-physical systems, multi-agent systems, dynamic pricing and artificial intelligence. This dissertation presents the development of a smart parking system architecture, using Cloud-based technology to integrate a multiagent system into a scalable, decentralized, adaptable and safe environment. The proposed architecture was tested using, as a case study, a web system developed for the management and analysis of smart parking lots, as well as an application for mobile devices, which allows users to interact with multiple functionalities available in this system. Results obtained demonstrate that the implementation of the proposed architecture offers an efficient communication between users who use parking resources and the multi-agent system responsible for the autonomy and intelligence of the parking system.Os sistemas inteligentes de estacionamento estão se tornando uma solução para problemas recorrentes à medida que aumenta o número de veículos em trânsito nas grandes cidades, os quais podem estar relacionados ao congestionamento no tráfego de veículos, tempo desnecessário gasto na busca por vagas e, consequentemente, questões ambientais. O objetivo desses sistemas é auxiliar os motoristas que buscam por vagas disponíveis ou que desejam reservar por determinado período de tempo, de forma rápida e, se possível, próximo ao local desejado. Neste contexto, existem vários módulos dentro dos sistemas inteligentes de estacionamento que podem incluir sistemas ciberfísicos, sistemas multi-agentes, precificação dinâmica e inteligência artificial. Esta dissertação apresenta o desenvolvimento de uma arquitetura para sistemas inteligentes de estacionamento, utilizando tecnologia baseada em Nuvem para integrar um sistema multi-agentes em um ambiente escalável, descentralizado, adaptável e seguro. A arquitetura proposta foi testada utilizando, como um caso de estudo, um sistema web desenvolvido para gestão e análise de estacionamentos inteligentes, bem como uma aplicação para dispositivos móveis, que permite ao usuário interagir com as múltiplas funcionalidades disponibilizadas neste sistema. Resultados obtidos demonstram que a implementação da arquitetura proposta oferece uma comunicação eficiente entre usuários que utilizam os recursos e o sistema multi-agentes responsável pela autonomia e inteligência de um sistema de estacionamento

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    IoT Smart Parking System Based on the Visual-Aided Smart Vehicle Presence Sensor: SPIN-V

    Get PDF
    Humanity is currently experiencing one of the short periods of transition thanks to novel sensing solutions for smart cities that bring the future to today. Overpopulation of cities demands the development of solid strategic plannings that uses infrastructure, innovation, and technology to adapt to rapid changes. To improve mobility in cities with a larger and larger vehicle fleet, a novel sensing solution that is the cornerstone of a smart parking system, the smart vehicular presence sensor (SPIN-V, in its Spanish abbreviation), is presented. The SPIN-V is composed of a small single-board computer, distance sensor, camera, LED indicator, buzzer, and battery and devoted to obtain the status of a parking space. This smart mobility project involves three main elements, namely the SPIN-V, a mobile application, and a monitoring center, working together to monitor, control, process, and display the parking space information in real-time to the drivers. In addition, the design and implementation of the three elements of the complete architecture are presented.ITESO, A.C
    corecore