911 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    AQuoSA - adaptive quality of service architecture

    Get PDF
    This paper presents an architecture for quality of service (QoS) control of time-sensitive applications in multi-programmed embedded systems. In such systems, tasks must receive appropriate timeliness guarantees from the operating system independently from one another; otherwise, the QoS experienced by the users may decrease. Moreover, fluctuations in time of the workloads make a static partitioning of the central processing unit (CPU) that is neither appropriate nor convenient, whereas an adaptive allocation based on an on-line monitoring of the application behaviour leads to an optimum design. By combining a resource reservation scheduler and a feedback-based mechanism, we allow applications to meet their QoS requirements with the minimum possible impact on CPU occupation. We implemented the framework in AQuoSA (Adaptive Quality of Service Architecture (AQuoSA). http://aquosa.sourceforge.net), a software architecture that runs on top of the Linux kernel. We provide extensive experimental validation of our results and offer an evaluation of the introduced overhead, which is perfectly sustainable in the class of addressed applications

    Control and Embedded Computing: Survey of Research Directions

    Get PDF
    This paper provides a survey of the role of feedback control in embedded realtimesystems, presented in the context of a new EU/IST Network of Excellence, ARTIST2.The survey highlights recent research efforts and future research directions in the areasof codesign of computer-based control systems, implementation-aware embedded controlsystems, and control of real-time computing systems

    On-line schedulability tests for adaptive reservations in fixed priority scheduling

    Get PDF
    Adaptive reservation is a real-time scheduling technique in which each application is associated a fraction of the computational resource (a reservation) that can be dynamically adapted to the varying requirements of the application by using appropriate feedback control algorithms. An adaptive reservation is typically implemented by using an aperiodic server (e.g. sporadic server) algorithm with fixed period and variable budget. When the feedback law demands an increase of the reservation budget, the system must run a schedulability test to check if there is enough spare bandwidth to accommodate such increase. The schedulability test must be very fast, as it may be performed at each budget update, i.e. potentially at each instance of a task; yet, it must be as efficient as possible, to maximize resource usage. In this paper, we tackle the problem of performing an efficient on-line schedulability test for adaptive resource reservations in fixed priority schedulers. In the literature, a number of algorithms have been proposed for on-line admission control in fixed priority systems. We describe four of these tests, with increasing complexity and performance. In addition, we propose a novel on-line test, called Spare-Pot al- gorithm, which has been specifically designed for the problem at hand, and which shows a good cost/performance ratio compared to the other tests
    • …
    corecore