7,525 research outputs found

    Mobile Charging as a Service: A Reservation-Based Approach

    Get PDF
    This paper aims to design an intelligent mobile charging control mechanism for Electric Vehicles (EVs), by promoting charging reservations (including service start time, expected charging time, and charging location, etc.). EV mobile charging could be implemented as an alternative recharging solution, wherein charge replenishment is provided by economically mobile plug-in chargers, capable of providing on-site charging services. With intelligent charging management, readily available mobile chargers are predictable and could be efficiently scheduled towards EVs with charging demand, based on updated context collected from across the charging network. The context can include critical information relating to charging sessions as well as charging demand, etc. Further with reservations introduced, accurate estimations on charging demand for a future moment are achievable, and correspondingly, optimal mobile chargersselection can be obtained. Therefore, charging demands across the network can be efficiently and effectively satisfied, with the support of intelligent system-level decisions. In order to evaluate critical performance attributes, we further carry out extensive simulation experiments with practical concerns to verify our insights observed from the theoretical analysis. Results show great performance gains by promoting the reservation-based mobile charger-selection, especially for mobile chargers equipped with suffice power capacity

    Priority Based EV Charging Management Under Service Reservation in Smart Grid

    Get PDF
    The introduction of electric vehicles(EVs) alleviates greenhouse gases emission.Its application has huge potential in the attempt to achieve green transportation today.However,the long charging time and charging congestion greatly affect the travel experience of EVs.To optimize EV charging,the charging station(CS) selection scheme(where to charge) and the charging scheduling strategy(when to charge) become the core of solving the problem of urban EV charging.In this paper,the preemptive charging scheduling strategy considering the charging priority(CP) is proposed.This strategy allows the preemptive charging of EVs with high urgency of charging(calculated from the charging demand and the remaining parking duration).Based on the CP charging scheduling strategy,a CS selection scheme that further combines reservation information is optimized.This scheme selects the CS with the shortest charging travel time(including one-time charging process) for EVs.Meanwhile,EVs are required to report their charging reservation information to accurately predict the congestion status of CSs,so as to efficiently allocate charging resources.The charging network is simulated through the urban traffic scene of Helsinki.The results show that the charging management scheme,CP scheduling strategy and reservation-based CS selection scheme proposed in this paper,can effectively shorten the average charging travel time of EVs and provide fully charging service for more EVs within a limited parking duration

    Smart Vehicle to Grid Interface Project: Electromobility Management System Architecture and Field Test Results

    Full text link
    This paper presents and discusses the electromobility management system developed in the context of the SMARTV2G project, enabling the automatic control of plug-in electric vehicles' (PEVs') charging processes. The paper describes the architecture and the software/hardware components of the electromobility management system. The focus is put in particular on the implementation of a centralized demand side management control algorithm, which allows remote real time control of the charging stations in the field, according to preferences and constraints expressed by all the actors involved (in particular the distribution system operator and the PEV users). The results of the field tests are reported and discussed, highlighting critical issues raised from the field experience.Comment: To appear in IEEE International Electric Vehicle Conference (IEEE IEVC 2014

    Forecasting the state of health of electric vehicle batteries to evaluate the viability of car sharing practices

    Get PDF
    Car sharing practices are introducing electric vehicles into their fleet. However, literature suggests that at this point shared electric vehicle systems are failing to reach satisfactory commercial viability. Potential reason for this is the effect of higher vehicle usage which is characteristic for car sharing, and the implication on the battery state of health. In this paper, we forecast state of health for two identical electric vehicles shared by two different car sharing practices. For this purpose, we use real life transaction data from charging stations and different electric vehicles’ sensors. The results indicate that insight into users’ driving and charging behaviour can provide valuable point of reference for car sharing system designers. In particular, the forecasting results show that the moment when electric vehicle battery reaches its theoretical end of life can differ in as much as ¼ of time when vehicles are shared under different conditions
    corecore