810 research outputs found

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    What Really Matters in Spectrum Allocation Design

    Get PDF
    Since initiated in the U.S. in July 1994, auctions have replaced "beauty contests" in the assignment of wireless licenses in many countries. Economists have been involved in constructing the competitive bidding mechanisms chosen, and have devoted considerable analysis to the problems involved. Generally, auction methods have been evaluated according to the receipts generated; social gains resulting from the displacement of activity-distorting taxes has motivated the welfare analysis. Yet, policies widely advocated by economists to intensify license bidding , such as reservation prices or bidding credits for "weak"' bidders , may impose deadweight losses that dominate revenue raising efficiencies. Yet, retail market effects are largely excluded from cost-benefit calculations of rules to assign licenses. This paper reviews a number of case studies suggesting that economic analysis is most usefully focused on consumer welfare in wireless service markets, the outputs resulting from license use. Econometric evidence from mobile phone markets in twenty-nine countries suggests that auctions do not lower prices or increase usage, while liberalization, increased spectrum allocations and more competitive markets -- produces such pro-consumer results. We use simulations to compare the net social benefits of liberalization against policies suggested in the auction literature to enhance license bids. We argue that increases in bandwidth and competitiveness produce consumer benefits that generally dominate social gains from rent extraction via wireless license auctions.

    Efficient sharing mechanisms for virtualized multi-tenant heterogeneous networks

    Get PDF
    The explosion in data traffic, the physical resource constraints, and the insufficient financial incentives for deploying 5G networks, stress the need for a paradigm shift in network upgrades. Typically, operators are also the service providers, which charge the end users with low and flat tariffs, independently of the service enjoyed. A fine-scale management of the network resources is needed, both for optimizing costs and resource utilization, as well as for enabling new synergies among network owners and third-parties. In particular, operators could open their networks to third parties by means of fine-scale sharing agreements over customized networks for enhanced service provision, in exchange for an adequate return of investment for upgrading their infrastructures. The main objective of this thesis is to study the potential of fine-scale resource management and sharing mechanisms for enhancing service provision and for contributing to a sustainable road to 5G. More precisely, the state-of-the-art architectures and technologies for network programmability and scalability are studied, together with a novel paradigm for supporting service diversity and fine-scale sharing. We review the limits of conventional networks, we extend existing standardization efforts and define an enhanced architecture for enabling 5G networks' features (e.g., network-wide centralization and programmability). The potential of the proposed architecture is assessed in terms of flexible sharing and enhanced service provision, while the advantages of alternative business models are studied in terms of additional profits to the operators. We first study the data rate improvement achievable by means of spectrum and infrastructure sharing among operators and evaluate the profit increase justified by a better service provided. We present a scheme based on coalitional game theory for assessing the capability of accommodating more service requests when a cooperative approach is adopted, and for studying the conditions for beneficial sharing among coalitions of operators. Results show that: i) collaboration can be beneficial also in case of unbalanced cost redistribution within coalitions; ii) coalitions of equal-sized operators provide better profit opportunities and require lower tariffs. The second kind of sharing interaction that we consider is the one between operators and third-party service providers, in the form of fine-scale provision of customized portions of the network resources. We define a policy-based admission control mechanism, whose performance is compared with reference strategies. The proposed mechanism is based on auction theory and computes the optimal admission policy at a reduced complexity for different traffic loads and allocation frequencies. Because next-generation services include delay-critical services, we compare the admission control performances of conventional approaches with the proposed one, which proves to offer near real-time service provision and reduced complexity. Besides, it guarantees high revenues and low expenditures in exchange for negligible losses in terms of fairness towards service providers. To conclude, we study the case where adaptable timescales are adopted for the policy-based admission control, in order to promptly guarantee service requirements over traffic fluctuations. In order to reduce complexity, we consider the offline pre­computation of admission strategies with respect to reference network conditions, then we study the extension to unexplored conditions by means of computationally efficient methodologies. Performance is compared for different admission strategies by means of a proof of concept on real network traces. Results show that the proposed strategy provides a tradeoff in complexity and performance with respect to reference strategies, while reducing resource utilization and requirements on network awareness.La explosion del trafico de datos, los recursos limitados y la falta de incentivos para el desarrollo de 5G evidencian la necesidad de un cambio de paradigma en la gestion de las redes actuales. Los operadores de red suelen ser tambien proveedores de servicios, cobrando tarifas bajas y planas, independientemente del servicio ofrecido. Se necesita una gestion de recursos precisa para optimizar su utilizacion, y para permitir nuevas sinergias entre operadores y proveedores de servicios. Concretamente, los operadores podrian abrir sus redes a terceros compartiendolas de forma flexible y personalizada para mejorar la calidad de servicio a cambio de aumentar sus ganancias como incentivo para mejorar sus infraestructuras. El objetivo principal de esta tesis es estudiar el potencial de los mecanismos de gestion y comparticion de recursos a pequei\a escala para trazar un camino sostenible hacia el 5G. En concreto, se estudian las arquitecturas y tecnolog fas mas avanzadas de "programabilidad" y escalabilidad de las redes, junto a un nuevo paradigma para la diversificacion de servicios y la comparticion de recursos. Revisamos los limites de las redes convencionales, ampliamos los esfuerzos de estandarizacion existentes y definimos una arquitectura para habilitar la centralizacion y la programabilidad en toda la red. La arquitectura propuesta se evalua en terminos de flexibilidad en la comparticion de recursos, y de mejora en la prestacion de servicios, mientras que las ventajas de un modelo de negocio alternativo se estudian en terminos de ganancia para los operadores. En primer lugar, estudiamos el aumento en la tasa de datos gracias a un uso compartido del espectro y de las infraestructuras, y evaluamos la mejora en las ganancias de los operadores. Presentamos un esquema de admision basado en la teoria de juegos para acomodar mas solicitudes de servicio cuando se adopta un enfoque cooperativo, y para estudiar las condiciones para que la reparticion de recursos sea conveniente entre coaliciones de operadores. Los resultados ensei\an que: i) la colaboracion puede ser favorable tambien en caso de una redistribucion desigual de los costes en cada coalicion; ii) las coaliciones de operadores de igual tamai\o ofrecen mejores ganancias y requieren tarifas mas bajas. El segundo tipo de comparticion que consideramos se da entre operadores de red y proveedores de servicios, en forma de provision de recursos personalizada ya pequei\a escala. Definimos un mecanismo de control de trafico basado en polfticas de admision, cuyo rendimiento se compara con estrategias de referencia. El mecanismo propuesto se basa en la teoria de subastas y calcula la politica de admision optima con una complejidad reducida para diferentes cargas de trafico y tasa de asignacion. Con particular atencion a servicios 5G de baja latencia, comparamos las prestaciones de estrategias convencionales para el control de admision con las del metodo propuesto, que proporciona: i) un suministro de servicios casi en tiempo real; ii) una complejidad reducida; iii) unos ingresos elevados; y iv) unos gastos reducidos, a cambio de unas perdidas insignificantes en terminos de imparcialidad hacia los proveedores de servicios. Para concluir, estudiamos el caso en el que se adoptan escalas de tiempo adaptables para el control de admision, con el fin de garantizar puntualmente los requisitos de servicio bajo diferentes condiciones de trafico. Para reducir la complejidad, consideramos el calculo previo de las estrategias de admision con respecto a condiciones de red de referenda, adaptables a condiciones inexploradas por medio de metodologias computacionalmente eficientes. Se compara el rendimiento de diferentes estrategias de admision sobre trazas de trafico real. Los resultados muestran que la estrategia propuesta equilibra complejidad y ganancias, mientras se reduce la utilizacion de recursos y la necesidad de conocer el estado exacto de la red.Postprint (published version

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Rethinking the Commitment to Free, Local Television

    Get PDF

    A Game-theoretic Model for Regulating Freeriding in Subsidy-Based Pervasive Spectrum Sharing Markets

    Get PDF
    Cellular spectrum is a limited natural resource becoming scarcer at a worrisome rate. To satisfy users\u27 expectation from wireless data services, researchers and practitioners recognized the necessity of more utilization and pervasive sharing of the spectrum. Though scarce, spectrum is underutilized in some areas or within certain operating hours due to the lack of appropriate regulatory policies, static allocation and emerging business challenges. Thus, finding ways to improve the utilization of this resource to make sharing more pervasive is of great importance. There already exists a number of solutions to increase spectrum utilization via increased sharing. Dynamic Spectrum Access (DSA) enables a cellular operator to participate in spectrum sharing in many ways, such as geological database and cognitive radios, but these systems perform spectrum sharing at the secondary level (i.e., the bands are shared if and only if the primary/licensed user is idle) and it is questionable if they will be sufficient to meet the future expectations of the spectral efficiency. Along with the secondary sharing, spectrum sharing among primary users is emerging as a new domain of future mode of pervasive sharing. We call this type of spectrum sharing among primary users as pervasive spectrum sharing (PSS) . However, such spectrum sharing among primary users requires strong incentives to share and ensuring a freeriding-free cellular market. Freeriding in pervasively shared spectrum markets (be it via government subsidies/regulations or self-motivated coalitions among cellular operators) is a real techno-economic challenge to be addressed. In a PSS market, operators will share their resources with primary users of other operators and may sometimes have to block their own primary users in order to attain sharing goals. Small operators with lower quality service may freeride on large operators\u27 infrastructure in such pervasively shared markets. Even worse, since small operators\u27 users may perceive higher-than-expected service quality for a lower fee, this can cause customer loss to the large operators and motivate small operators to continue freeriding with additional earnings from the stolen customers. Thus, freeriding can drive a shared spectrum market to an unhealthy and unstable equilibrium. In this work, we model the freeriding by small operators in shared spectrum markets via a game-theoretic framework. We focus on a performance-based government incentivize scheme and aim to minimize the freeriding issue emerging in such PSS markets. We present insights from the model and discuss policy and regulatory challenges

    An Economic Framework For Resource Management And Pricing In Wireless Networks With Competitive Service Providers

    Get PDF
    A paradigm shift from static spectrum allocation to dynamic spectrum access (DSA) is becoming a reality due to the recent advances in cognitive radio, wide band spectrum sensing, and network aware real--time spectrum access. It is believed that DSA will allow wireless service providers (WSPs) the opportunity to dynamically access spectrum bands as and when they need it. Moreover, due to the presence of multiple WSPs in a region, it is anticipated that dynamic service pricing would be offered that will allow the end-users to move from long-term service contracts to more flexible short-term service models. In this research, we develop a unified economic framework to analyze the trading system comprising two components: i) spectrum owner--WSPs interactions with regard to dynamic spectrum allocation, and ii) WSP--end-users interactions with regard to dynamic service pricing. For spectrum owner--WSPs interaction, we investigate various auction mechanisms for finding bidding strategies of WSPs and revenue generated by the spectrum owner. We show that sequential bidding provides better result than the concurrent bidding when WSPs are constrained to at most single unit allocation. On the other hand, when the bidders request for multiple units, (i.e., they are not restricted by allocation constraints) synchronous auction mechanism proves to be beneficial than asynchronous auctions. In this regard, we propose a winner determination sealed-bid knapsack auction mechanism that dynamically allocates spectrum to the WSPs based on their bids. As far as dynamic service pricing is concerned, we use game theory to capture the conflict of interest between WSPs and end--users, both of whom try to maximize their respective net utilities. We deviate from the traditional per--service static pricing towards a more dynamic model where the WSPs might change the price of a service almost on a session by session basis. Users, on the other hand, have the freedom to choose their WSP based on the price offered. It is found that in such a greedy and non-cooperative behavioral game model, it is in the best interest of the WSPs to adhere to a price threshold which is a consequence of a price (Nash) equilibrium. We conducted extensive simulation experiments, the results of which show that the proposed auction model entices WSPs to participate in the auction, makes optimal use of the common spectrum pool, and avoids collusion among WSPs. We also demonstrate how pricing can be used as an effective tool for providing incentives to the WSPs to upgrade their network resources and offer better services

    SMART: Coordinated Double-Sided Seal Bid Multiunit First Price Auction Mechanism for Cloud-Based TVWS Secondary Spectrum Market

    Get PDF
    Spectrum trading is an important aspect of television white space (TVWS) and it is driven by the failure of spectrum sensing techniques. In spectrum trading, the primary users lease their unoccupied spectrum to the secondary users for a market fee. Although spectrum trading is considered as a reliable approach, it is confronted with a spectrum transaction completion time problem, which negatively impacts on end-users Quality of Service and Quality of Experience metrics. Spectrum transaction completion time is the duration to successfully conduct TVWS spectrum trading. To address this issue, this paper proposes simple mechanism auction reward truthful (SMART), a fast and iterative machine learning-assisted spectrum trading model to address this issue. Simulated results indicate thatSMART out-performs referenced VERUM algorithm in three key performance indicators: bit-error rate, instantaneous throughput, and probability of dropped packets by 10%, 5%, and 15%, respectively
    • …
    corecore