8,935 research outputs found

    The Globalization of Artificial Intelligence: African Imaginaries of Technoscientific Futures

    Get PDF
    Imaginaries of artificial intelligence (AI) have transcended geographies of the Global North and become increasingly entangled with narratives of economic growth, progress, and modernity in Africa. This raises several issues such as the entanglement of AI with global technoscientific capitalism and its impact on the dissemination of AI in Africa. The lack of African perspectives on the development of AI exacerbates concerns of raciality and inclusion in the scientific research, circulation, and adoption of AI. My argument in this dissertation is that innovation in AI, in both its sociotechnical imaginaries and political economies, excludes marginalized countries, nations and communities in ways that not only bar their participation in the reception of AI, but also as being part and parcel of its creation. Underpinned by decolonial thinking, and perspectives from science and technology studies and African studies, this dissertation looks at how AI is reconfiguring the debate about development and modernization in Africa and the implications for local sociotechnical practices of AI innovation and governance. I examined AI in international development and industry across Kenya, Ghana, and Nigeria, by tracing Canada’s AI4D Africa program and following AI start-ups at AfriLabs. I used multi-sited case studies and discourse analysis to examine the data collected from interviews, participant observations, and documents. In the empirical chapters, I first examine how local actors understand the notion of decolonizing AI and show that it has become a sociotechnical imaginary. I then investigate the political economy of AI in Africa and argue that despite Western efforts to integrate the African AI ecosystem globally, the AI epistemic communities in the continent continue to be excluded from dominant AI innovation spaces. Finally, I examine the emergence of a Pan-African AI imaginary and argue that AI governance can be understood as a state-building experiment in post-colonial Africa. The main issue at stake is that the lack of African perspectives in AI leads to negative impacts on innovation and limits the fair distribution of the benefits of AI across nations, countries, and communities, while at the same time excludes globally marginalized epistemic communities from the imagination and creation of AI

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells

    Get PDF
    Extrachromosomal DNAs (ecDNAs) are common in cancer, but many questions about their origin, structural dynamics and impact on intratumor heterogeneity are still unresolved. Here we describe single-cell extrachromosomal circular DNA and transcriptome sequencing (scEC&T-seq), a method for parallel sequencing of circular DNAs and full-length mRNA from single cells. By applying scEC&T-seq to cancer cells, we describe intercellular differences in ecDNA content while investigating their structural heterogeneity and transcriptional impact. Oncogene-containing ecDNAs were clonally present in cancer cells and drove intercellular oncogene expression differences. In contrast, other small circular DNAs were exclusive to individual cells, indicating differences in their selection and propagation. Intercellular differences in ecDNA structure pointed to circular recombination as a mechanism of ecDNA evolution. These results demonstrate scEC&T-seq as an approach to systematically characterize both small and large circular DNA in cancer cells, which will facilitate the analysis of these DNA elements in cancer and beyond

    Single-cell RNA sequencing reveals cell subpopulations in the tumor microenvironment contributing to hepatocellular carcinoma

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is among the deadliest cancers worldwide, and advanced HCC is difficult to treat. Identifying specific cell subpopulations in the tumor microenvironment and exploring interactions between the cells and their environment are crucial for understanding the development, prognosis, and treatment of tumors.Methods: In this study, we constructed a tumor ecological landscape of 14 patients with HCC from 43 tumor tissue samples and 14 adjacent control samples. We used bioinformatics analysis to reveal cell subpopulations with potentially specific functions in the tumor microenvironment and to explore the interactions between tumor cells and the tumor microenvironment.Results: Immune cell infiltration was evident in the tumor tissues, and BTG1+RGS1+ central memory T cells (Tcms) interact with tumor cells through CCL5-SDC4/1 axis. HSPA1B may be associated with remodeling of the tumor ecological niche in HCC. Cancer-associated fibroblasts (CAFs) and macrophages (TAMs) were closely associated with tumor cells. APOC1+SPP1+ TAM secretes SPP1, which binds to ITGF1 secreted by CAFs to remodel the tumor microenvironment. More interestingly, FAP+ CAF interacts with naïve T cells via the CXCL12–CXCR4 axis, which may lead to resistance to immune checkpoint inhibitor therapy.Conclusion: Our study suggests the presence of tumor cells with drug-resistant potential in the HCC microenvironment. Among non-tumor cells, high NDUFA4L2 expression in fibroblasts may promote tumor progression, while high HSPA1B expression in central memory T cells may exert anti-tumor effects. In addition, the CCL5–SDC4/1 interaction between BTG1+RGS1+ Tcms and tumor cells may promote tumor progression. Focusing on the roles of CAFs and TAMs, which are closely related to tumor cells, in tumors would be beneficial to the progress of systemic therapy research

    New paradigmatic orientations and research agenda of human factors science in the intelligence era

    Full text link
    Our recent research shows that the design philosophy of human factors science in the intelligence age is expanding from "user-centered design" to "human-centered AI". The human-machine relationship presents a trans-era evolution from "human-machine interaction" to "human-machine/AI teaming". These changes have raised new questions and challenges for human factors science. The interdisciplinary field of human factors science includes any work that adopts a human-centered approach, such as human factors, ergonomics, engineering psychology, and human-computer interaction. These changes compel us to re-examine current human factors science's paradigms and research agenda. Existing research paradigms are primarily based on non-intelligent technologies. In this context, this paper reviews the evolution of the paradigms of human factors science. It summarizes the new conceptual models and frameworks we recently proposed to enrich the research paradigms for human factors science, including a human-AI teaming model, a human-AI joint cognitive ecosystem framework, and an intelligent sociotechnical systems framework. This paper further enhances these concepts and looks forward to the application of these concepts. This paper also looks forward to the future research agenda of human factors science in the areas of "human-AI interaction", "intelligent human-machine interface", and "human-AI teaming". It analyzes the role of the research paradigms on the future research agenda. We believe that the research paradigms and agenda of human factors science influence and promote each other. Human factors science in the intelligence age needs diversified and innovative research paradigms, thereby further promoting the research and application of human factors science.Comment: 26 pages, in Chinese languag

    Endogenous measures for contextualising large-scale social phenomena: a corpus-based method for mediated public discourse

    Get PDF
    This work presents an interdisciplinary methodology for developing endogenous measures of group membership through analysis of pervasive linguistic patterns in public discourse. Focusing on political discourse, this work critiques the conventional approach to the study of political participation, which is premised on decontextualised, exogenous measures to characterise groups. Considering the theoretical and empirical weaknesses of decontextualised approaches to large-scale social phenomena, this work suggests that contextualisation using endogenous measures might provide a complementary perspective to mitigate such weaknesses. This work develops a sociomaterial perspective on political participation in mediated discourse as affiliatory action performed through language. While the affiliatory function of language is often performed consciously (such as statements of identity), this work is concerned with unconscious features (such as patterns in lexis and grammar). This work argues that pervasive patterns in such features that emerge through socialisation are resistant to change and manipulation, and thus might serve as endogenous measures of sociopolitical contexts, and thus of groups. In terms of method, the work takes a corpus-based approach to the analysis of data from the Twitter messaging service whereby patterns in users’ speech are examined statistically in order to trace potential community membership. The method is applied in the US state of Michigan during the second half of 2018—6 November having been the date of midterm (i.e. non-Presidential) elections in the United States. The corpus is assembled from the original posts of 5,889 users, who are nominally geolocalised to 417 municipalities. These users are clustered according to pervasive language features. Comparing the linguistic clusters according to the municipalities they represent finds that there are regular sociodemographic differentials across clusters. This is understood as an indication of social structure, suggesting that endogenous measures derived from pervasive patterns in language may indeed offer a complementary, contextualised perspective on large-scale social phenomena

    An Investigation of Scleral Biomechanics and Myopia in the Mouse

    Get PDF
    The prevalence of myopia, or ”nearsightedness” is on the rise globally, set to affect about half of the global population by 2050. A myopic eye is characterized by a mismatch between the focal point of incoming light and the position of the photosensitive retina, most commonly due to excessive axial elongation of the eye (axial myopia). Axial myopia is thought to be driven by remodeling of the scleral microstructure and altered biomechanics. Certain types of visual cues drive or protect against myopigenic axial elongation, coupling retinal signaling to scleral remodeling via a complex ”retinoscleral” signaling cascade. However, the key signaling molecules that may propagate retinal signal(s) through the choroid to the sclera are largely unknown. All-trans retinoic acid (atRA) has been suggested to be both capable of trans-choroidal signaling and influencing scleral remodeling of glycosaminoglycans, biomechanically relevant extracellular matrix components known to change rapidly upon presentation of visual cues. The mouse can be an excellent model organism for causal studies of myopigenesis, yet its small eye makes confirming axial elongation and scleral changes technically challenging. The central hypothesis of this work was that visual cues will lead to scleral remodeling and altered biomechanics comparable to other species. Additionally, we hypothesized that artificially increasing atRA concentration in the eye leads to a myopic phenotype. To address these hypotheses, we developed a method to quantify the material properties of the mouse sclera using compression testing and a poroelastic material model, permitting the first characterizations of mouse scleral compressive/tensile stiffness and hydraulic permeability. In the mouse model of form-deprivation myopia, we then showed that the extensibility and permeability of the mouse sclera are greatly increased during myopigenesis, even without measurable axial elongation. We then characterized the ocular phenotype of mice treated with atRA, showing that atRA is myopigenic in the mouse and that scleral biomechanics are altered in a manner similar to that seen in visually mediated myopigenesis. These results implicate retinoic acid in the myopigenic retinoscleral signaling cascade and lay the groundwork for future studies of myopigenesis in the mouse.Ph.D

    Application of Track Geometry Deterioration Modelling and Data Mining in Railway Asset Management

    Get PDF
    Modernin rautatiejärjestelmän hallinnassa rahankäyttö kohdistuu valtaosin nykyisen rataverkon korjauksiin ja parannuksiin ennemmin kuin uusien ratojen rakentamiseen. Nykyisen rataverkon kunnossapitotyöt aiheuttavat suurten kustannusten lisäksi myös usein liikennerajoitteita tai yhteyksien väliaikaisia sulkemisia, jotka heikentävät rataverkon käytettävyyttä Siispä oikea-aikainen ja pitkäaikaisia parannuksia aikaansaava kunnossapito ovat edellytyksiä kilpailukykyisille ja täsmällisille rautatiekuljetuksille. Tällainen kunnossapito vaatii vankan tietopohjan radan nykyisestä kunnosta päätöksenteon tueksi. Ratainfran omistajat teettävät päätöksenteon tueksi useita erilaisia radan kuntoa kuvaavia mittauksia ja ylläpitävät kattavia omaisuustietorekistereitä. Kenties tärkein näistä datalähteistä on koneellisen radantarkastuksen tuottamat mittaustulokset, jotka kuvastavat radan geometrian kuntoa. Nämä mittaustulokset ovat tärkeitä, koska ne tuottavat luotettavaa kuntotietoa: mittaukset tehdään toistuvasti, 2–6 kertaa vuodessa Suomessa rataosasta riippuen, mittausvaunu pysyy useita vuosia samana, tulokset ovat hyvin toistettavia ja ne antavat hyvän yleiskuvan radan kunnosta. Vaikka laadukasta dataa on paljon saatavilla, käytännön omaisuudenhallinnassa on merkittäviä haasteita datan analysoinnissa, sillä vakiintuneita menetelmiä siihen on vähän. Käytännössä seurataan usein vain mittaustulosten raja-arvojen ylittymistä ja pyritään subjektiivisesti arvioimaan rakenteiden kunnon kehittymistä ja korjaustarpeita. Kehittyneen analytiikan puutteet estävät kuntotietojen laajamittaisen hyödyntämisen kunnossapidon suunnittelussa, mikä vaikeuttaa päätöksentekoa. Tämän väitöskirjatutkimuksen päätavoitteita olivat kehittää ratageometrian heikkenemiseen mallintamismenetelmiä, soveltaa tiedonlouhintaa saatavilla olevan omaisuusdatan analysointiin sekä jalkauttaa kyseiset tutkimustulokset käytännön rataomaisuudenhallintaan. Ratageometrian heikkenemisen mallintamismenetelmien kehittämisessä keskityttiin tuottamaan nykyisin saatavilla olevasta datasta uutta tietoa radan kunnon kehityksestä, tehdyn kunnossapidon tehokkuudesta sekä tulevaisuuden kunnossapitotarpeista. Tiedonlouhintaa sovellettiin ratageometrian heikkenemisen juurisyiden selvittämiseen rataomaisuusdatan perusteella. Lopuksi hyödynnettiin kypsyysmalleja perustana ratageometrian heikkenemisen mallinnuksen ja rataomaisuusdatan analytiikan käytäntöön viennille. Tutkimustulosten perusteella suomalainen radantarkastus- ja rataomaisuusdata olivat riittäviä tavoiteltuihin analyyseihin. Tulokset osoittivat, että robusti lineaarinen optimointi soveltuu hyvin suomalaisen rataverkon ratageometrian heikkenemisen mallinnukseen. Mallinnuksen avulla voidaan tuottaa tunnuslukuja, jotka kuvaavat rakenteen kuntoa, kunnossapidon tehokkuutta ja tulevaa kunnossapitotarvetta, sekä muodostaa havainnollistavia visualisointeja datasta. Rataomaisuusdatan eksploratiiviseen tiedonlouhintaan käytetyn GUHA-menetelmän avulla voitiin selvittää mielenkiintoisia ja vaikeasti havaittavia korrelaatioita datasta. Näiden tulosten avulla saatiin uusia havaintoja ongelmallisista ratarakennetyypeistä. Havaintojen avulla voitiin kohdentaa jatkotutkimuksia näihin rakenteisiin, mikä ei olisi ollut mahdollista, jollei tiedonlouhinnan avulla olisi ensin tunnistettu näitä rakennetyyppejä. Kypsyysmallin soveltamisen avulla luotiin puitteet ratageometrian heikkenemisen mallintamisen ja rataomaisuusdatan analytiikan kehitykselle Suomen rataomaisuuden hallinnassa. Kypsyysmalli tarjosi käytännöllisen tavan lähestyä tarvittavaa kehitystyötä, kun eteneminen voitiin jaotella neljään eri kypsyystasoon, jotka loivat selkeitä välitavoitteita. Kypsyysmallin ja asetettujen välitavoitteiden avulla kehitys on suunniteltua ja edistystä voidaan jaotella, mikä antaa edellytykset tämän laajamittaisen kehityksen onnistuneelle läpiviennille. Tämän väitöskirjatutkimuksen tulokset osoittavat, miten nykyisin saatavilla olevasta datasta saadaan täysin uutta ja merkityksellistä tietoa, kun sitä käsitellään kehittyneen analytiikan avulla. Tämä väitöskirja tarjoaa datankäsittelyratkaisujen luomisen ja soveltamisen lisäksi myös keinoja niiden käytäntöönpanolle, sillä tietopohjaisen päätöksenteon todelliset hyödyt saavutetaan vasta käytännön radanpidossa.In the management of a modern European railway system, spending is predominantly allocated to maintaining and renewing the existing rail network rather than constructing completely new lines. In addition to major costs, the maintenance and renewals of the existing rail network often cause traffic restrictions or line closures, which decrease the usability of the rail network. Therefore, timely maintenance that achieves long-lasting improvements is imperative for achieving competitive and punctual rail traffic. This kind of maintenance requires a strong knowledge base for decision making regarding the current condition of track structures. Track owners commission several different measurements that depict the condition of track structures and have comprehensive asset management data repositories. Perhaps one of the most important data sources is the track recording car measurement history, which depicts the condition of track geometry at different times. These measurement results are important because they offer a reliable condition database; the measurements are done recurrently, two to six times a year in Finland depending on the track section; the same recording car is used for many years; the results are repeatable; and they provide a good overall idea of the condition of track structures. However, although high-quality data is available, there are major challenges in analysing the data in practical asset management because there are few established methods for analytics. Practical asset management typically only monitors whether given threshold values are exceeded and subjectively assesses maintenance needs and development in the condition of track structures. The lack of advanced analytics prevents the full utilisation of the available data in maintenance planning which hinders decision making. The main goals of this dissertation study were to develop track geometry deterioration modelling methods, apply data mining in analysing currently available railway asset data, and implement the results from these studies into practical railway asset management. The development of track geometry deterioration modelling methods focused on utilising currently available data for producing novel information on the development in the condition of track structures, past maintenance effectiveness, and future maintenance needs. Data mining was applied in investigating the root causes of track geometry deterioration based on asset data. Finally, maturity models were applied as the basis for implementing track geometry deterioration modelling and track asset data analytics into practice. Based on the research findings, currently available Finnish measurement and asset data was sufficient for the desired analyses. For the Finnish track inspection data, robust linear optimisation was developed for track geometry deterioration modelling. The modelling provided key figures, which depict the condition of structures, maintenance effectiveness, and future maintenance needs. Moreover, visualisations were created from the modelling to enable the practical use of the modelling results. The applied exploratory data mining method, General Unary Hypotheses Automaton (GUHA), could find interesting and hard-to-detect correlations within asset data. With these correlations, novel observations on problematic track structure types were made. The observations could be utilised for allocating further research for problematic track structures, which would not have been possible without using data mining to identify these structures. The implementation of track geometry deterioration and asset data analytics into practice was approached by applying maturity models. The use of maturity models offered a practical way of approaching future development, as the development could be divided into four maturity levels, which created clear incremental goals for development. The maturity model and the incremental goals enabled wide-scale development planning, in which the progress can be segmented and monitored, which enhances successful project completion. The results from these studies demonstrate how currently available data can be used to provide completely new and meaningful information, when advanced analytics are used. In addition to novel solutions for data analytics, this dissertation research also provided methods for implementing the solutions, as the true benefits of knowledge-based decision making are obtained in only practical railway asset management
    corecore