29,292 research outputs found

    A review of contemporary techniques for measuring ergonomic wear comfort of protective and sport clothing

    Get PDF
    Protective and sport clothing is governed by protection requirements, performance, and comfort of the user. The comfort and impact performance of protective and sport clothing are typically subjectively measured, and this is a multifactorial and dynamic process. The aim of this review paper is to review the contemporary methodologies and approaches for measuring ergonomic wear comfort, including objective and subjective techniques. Special emphasis is given to the discussion of different methods, such as objective techniques, subjective techniques, and a combination of techniques, as well as a new biomechanical approach called modeling of skin. Literature indicates that there are four main techniques to measure wear comfort: subjective evaluation, objective measurements, a combination of subjective and objective techniques, and computer modeling of human–textile interaction. In objective measurement methods, the repeatability of results is excellent, and quantified results are obtained, but in some cases, such quantified results are quite different from the real perception of human comfort. Studies indicate that subjective analysis of comfort is less reliable than objective analysis because human subjects vary among themselves. Therefore, it can be concluded that a combination of objective and subjective measuring techniques could be the valid approach to model the comfort of textile materials

    Considering the impact of situation-specific motivations and constraints in the design of naturally ventilated and hybrid buildings

    Get PDF
    A simple logical model of the interaction between a building and its occupants is presented based on the principle that if free to do so, people will adjust their posture, clothing or available building controls (windows, blinds, doors, fans, and thermostats) with the aim of achieving or restoring comfort and reducing discomfort. These adjustments are related to building design in two ways: first the freedom to adjust depends on the availability and ease-of-use of control options; second the use of controls affects building comfort and energy performance. Hence it is essential that these interactions are considered in the design process. The model captures occupant use of controls in response to thermal stimuli (too warm, too cold etc.) and non-thermal stimuli (e.g. desire for fresh air). The situation-specific motivations and constraints on control use are represented through trigger temperatures at which control actions occur, motivations are included as negative constraints and incorporated into a single constraint value describing the specifics of each situation. The values of constraints are quantified for a range of existing buildings in Europe and Pakistan. The integration of the model within a design flow is proposed and the impact of different levels of constraints demonstrated. It is proposed that to minimise energy use and maximise comfort in naturally ventilated and hybrid buildings the designer should take the following steps: 1. Provide unconstrained low energy adaptive control options where possible, 2. Avoid problems with indoor air quality which provide motivations for excessive ventilation rates, 3. Incorporate situation-specific adaptive behaviour of occupants in design simulations, 4. Analyse the robustness of designs against variations in patterns of use and climate, and 5. Incorporate appropriate comfort standards into the operational building controls (e.g. BEMS)

    Dual-band wearable textile antenna on an EBG substrate

    No full text
    Performance of a dual-band coplanar patch antenna integrated with an electromagnetic band gap substrate is described. The antenna structure is made from common clothing fabrics and operates at the 2.45 and 5 GHz wireless bands. The design of the coplanar antenna, band gap substrate, and their integration is presented. The band gap array consists of just 3 x 3 elements but reduces radiation into the body by over 10 dB and improves the antenna gain by 3 dB. The performance of the antenna under bending conditions and when placed on the human body are presented

    Predicting adaptive responses - simulating occupied environments

    Get PDF
    Simulation of building performance is increasingly being used in design practice to predict comfort of occupants in finished buildings. This is an area of great uncertainty: what actions does a person take when too warm or suffering from glare; how is comfort measured; how do groups of people interact to control environmental conditions, etc? An increasing attention to model these issues is evident in current research. Two issues are covered in this paper: how comfort can be assessed and what actions occupants are likely to make to achieve and maintain a comfortable status. The former issue describes the implementation of existing codes within a computational framework. This is non-trivial as information on local air velocities, radiant temperature and air temperature and relative humidity have to be predicted as they evolve over time in response to changing environmental conditions. This paper also presents a nascent algorithm for modelling occupant behaviour with respect to operable windows. The algorithm is based on results of several field studies which show the influence of internal and external temperatures on decision making in this respect. The derivation and implementation of the algorithm is discussed, highlighting areas where further effort could be of benefit
    • 

    corecore