9,293 research outputs found

    Digital manufacturing in fiat group automobiles: virtual simulations for preliminary ergonomics optimization of workcells in the design phase of a new car model

    Get PDF
    New standards on work organization in the automotive industry, require a new concept of design methods: the human centred process. In Fiat Group Automobiles (FGA) the “Digital Manufacturing” (DM) project has started with the goal to create simulation tools and methods to improve the design of new cars’manufacturing processes giving a special attention to manual operations. The DM approach is based on a detailed “virtual plant” where virtual mannequins interact with digital models of car’s components, equipment, containers, etc. in order to simulate and improve working conditions with many benefits on ergonomics, safety, final product quality, work organization and general production costs. The key factor for this approach is that with DM methodologies, designers and engineers have, already in the design phase of a new car’s manufacturing process, a preliminary estimation of the numerical indices used in the plants to check if workcells are compliant to international standards and regional safety laws. In this way the most important ergonomic indices (like Niosh, Snook & Ciriello, EAWS, etc.) become a “design tool” that allow to change/improve project solutions (designing easy and comfortable work tasks, equipment, tools, etc.) and to distribute the work load in an optimal way between workers

    Human Arm simulation for interactive constrained environment design

    Get PDF
    During the conceptual and prototype design stage of an industrial product, it is crucial to take assembly/disassembly and maintenance operations in advance. A well-designed system should enable relatively easy access of operating manipulators in the constrained environment and reduce musculoskeletal disorder risks for those manual handling operations. Trajectory planning comes up as an important issue for those assembly and maintenance operations under a constrained environment, since it determines the accessibility and the other ergonomics issues, such as muscle effort and its related fatigue. In this paper, a customer-oriented interactive approach is proposed to partially solve ergonomic related issues encountered during the design stage under a constrained system for the operator's convenience. Based on a single objective optimization method, trajectory planning for different operators could be generated automatically. Meanwhile, a motion capture based method assists the operator to guide the trajectory planning interactively when either a local minimum is encountered within the single objective optimization or the operator prefers guiding the virtual human manually. Besides that, a physical engine is integrated into this approach to provide physically realistic simulation in real time manner, so that collision free path and related dynamic information could be computed to determine further muscle fatigue and accessibility of a product designComment: International Journal on Interactive Design and Manufacturing (IJIDeM) (2012) 1-12. arXiv admin note: substantial text overlap with arXiv:1012.432

    Working Posture Evaluation of Clinical Student in Faculty of Dentistry University of Indonesia for the Scaling Task in Sitting Position in a Virtual Environment

    Full text link
    Musculoskeletal disorders (MSDs) are global issues in the dental profession. This research evaluated the MSDs risk caused by the sitting working posture of clinical students performing the task of scaling. The evaluation using the virtual environment approach shows risk of MSDs in the students’ upper extremities such as neck, shoulder, and trunk. Further simulation based on the ideal sitting working posture shows that ergonomic scaling could be achieved when the patient sits at a 15° angle. When scaling the 1st and 4th quadrant of the teeth, the 9 o’clock position is used. Hence, the 11 o’clock position is used when scaling the 2nd and 3rd quadrant

    Applications and benefits of digital human models to improve the design of workcells in car’s manufacturing plants according to international standards

    Get PDF
    During last years, the car’s manufacturing process has deeply changed because of several factors affected the automotive global scenario. As a consequence, design methodologies of the plant’s workcells have changed. In particular, ergonomics for manufacturing system has become a key factor to improve product’s quality, safety and work organization. In this paper, the authors show the approach used in Fiat Group Automobiles (FGA) based on simulation tools to analyse ergonomic aspects of work-cells already in design phase. Simulation tools allow a deep postural analysis that is one of the main criticism in the design phase. The principles of Digital Human Modeling have been used to develop an easy internal virtual manikin, the Human Model. The tool, based on ISO standards and on a worldwide anthropometric database, allows designers to simulate the most probable postures engaged by operator during work tasks as well as to validate improvements and corrective actions

    Framework for Dynamic Evaluation of Muscle Fatigue in Manual Handling Work

    Get PDF
    Muscle fatigue is defined as the point at which the muscle is no longer able to sustain the required force or work output level. The overexertion of muscle force and muscle fatigue can induce acute pain and chronic pain in human body. When muscle fatigue is accumulated, the functional disability can be resulted as musculoskeletal disorders (MSD). There are several posture exposure analysis methods useful for rating the MSD risks, but they are mainly based on static postures. Even in some fatigue evaluation methods, muscle fatigue evaluation is only available for static postures, but not suitable for dynamic working process. Meanwhile, some existing muscle fatigue models based on physiological models cannot be easily used in industrial ergonomic evaluations. The external dynamic load is definitely the most important factor resulting muscle fatigue, thus we propose a new fatigue model under a framework for evaluating fatigue in dynamic working processes. Under this framework, virtual reality system is taken to generate virtual working environment, which can be interacted with the work with haptic interfaces and optical motion capture system. The motion information and load information are collected and further processed to evaluate the overall work load of the worker based on dynamic muscle fatigue models and other work evaluation criterions and to give new information to characterize the penibility of the task in design process.Comment: International Conference On Industrial Technology, Chengdu : Chine (2008

    Natural Virtual Reality User Interface to Define Assembly Sequences for Digital Human Models

    Get PDF
    Digital human models (DHMs) are virtual representations of human beings. They are used to conduct, among other things, ergonomic assessments in factory layout planning. DHM software tools are challenging in their use and thus require a high amount of training for engineers. In this paper, we present a virtual reality (VR) application that enables engineers to work with DHMs easily. Since VR systems with head-mounted displays (HMDs) are less expensive than CAVE systems, HMDs can be integrated more extensively into the product development process. Our application provides a reality-based interface and allows users to conduct an assembly task in VR and thus to manipulate the virtual scene with their real hands. These manipulations are used as input for the DHM to simulate, on that basis, human ergonomics. Therefore, we introduce a software and hardware architecture, the VATS (virtual action tracking system). This paper furthermore presents the results of a user study in which the VATS was compared to the existing WIMP (Windows, Icons, Menus and Pointer) interface. The results show that the VATS system enables users to conduct tasks in a significantly faster way

    Can virtual reality predict body part discomfort and performance of people in realistic world for assembling tasks?

    Get PDF
    This paper presents our work on relationship of evaluation results between virtual environment (VE) and realistic environment (RE) for assembling tasks. Evaluation results consist of subjective results (BPD and RPE) and objective results (posture and physical performance). Same tasks were performed with same experimental configurations and evaluation results were measured in RE and VE respectively. Then these evaluation results were compared. Slight difference of posture between VE and RE was found but not great difference of effect on people according to conventional ergonomics posture assessment method. Correlation of BPD and performance results between VE and RE are found by linear regression method. Moreover, results of BPD, physical performance, and RPE in VE are higher than that in RE with significant difference. Furthermore, these results indicates that subjects feel more discomfort and fatigue in VE than RE because of additional effort required in VE

    On the Collaboration of an Automatic Path-Planner and a Human User for Path-Finding in Virtual Industrial Scenes

    Get PDF
    This paper describes a global interactive framework enabling an automatic path-planner and a user to collaborate for finding a path in cluttered virtual environments. First, a collaborative architecture including the user and the planner is described. Then, for real time purpose, a motion planner divided into different steps is presented. First, a preliminary workspace discretization is done without time limitations at the beginning of the simulation. Then, using these pre-computed data, a second algorithm finds a collision free path in real time. Once the path is found, an haptic artificial guidance on the path is provided to the user. The user can then influence the planner by not following the path and automatically order a new path research. The performances are measured on tests based on assembly simulation in CAD scenes
    corecore