696 research outputs found

    Mobility-aware hierarchical fog computing framework for Industrial Internet of Things (IIoT)

    Get PDF
    The Industrial Internet of Things (IIoTs) is an emerging area that forms the collaborative environment for devices to share resources. In IIoT, many sensors, actuators, and other devices are used to improve industrial efficiency. As most of the devices are mobile; therefore, the impact of mobility can be seen in terms of low-device utilization. Thus, most of the time, the available resources are underutilized. Therefore, the inception of the fog computing model in IIoT has reduced the communication delay in executing complex tasks. However, it is not feasible to cover the entire region through fog nodes; therefore, fog node selection and placement is still the challenging task. This paper proposes a multi-level hierarchical fog node deployment model for the industrial environment. Moreover, the scheme utilized the IoT devices as a fog node; however, the selection depends on energy, path/location, network properties, storage, and available computing resources. Therefore, the scheme used the location-aware module before engaging the device for task computation. The framework is evaluated in terms of memory, CPU, scalability, and system efficiency; also compared with the existing approach in terms of task acceptance rate. The scheme is compared with xFogSim framework that is capable to handle workload upto 1000 devices. However, the task acceptance ratio is higher in the proposed framework due to its multi-tier model. The workload acceptance ratio is 85% reported with 3000 devices; whereas, in xFogsim the ratio is reduced to approx. 68%. The primary reason for high workload acceptation is that the proposed solution utilizes the unused resources of the user devices for computations

    Dynamic Resource Allocation in Industrial Internet of Things (IIoT) using Machine Learning Approaches

    Get PDF
    In today's era of rapid smart equipment development and the Industrial Revolution, the application scenarios for Internet of Things (IoT) technology are expanding widely. The combination of IoT and industrial manufacturing systems gives rise to the Industrial IoT (IIoT). However, due to resource limitations such as computational units and battery capacity in IIoT devices (IIEs), it is crucial to execute computationally intensive tasks efficiently. The dynamic and continuous generation of tasks poses a significant challenge to managing the limited resources in the IIoT environment. This paper proposes a collaborative approach for optimal offloading and resource allocation of highly sensitive industrial IoT tasks. Firstly, the computation-intensive IIoT tasks are transformed into a directed acyclic graph. Then, task offloading is treated as an optimization problem, taking into account the models of processor resources and energy consumption for the offloading scheme. Lastly, a dynamic resource allocation approach is introduced to allocate computing resources to the edge-cloud server for the execution of computation-intensive tasks. The proposed joint offloading and scheduling (JOS) algorithm creates its DAG and prepare a offloading queue. This queue is designed using collaborative q-learning based reinforcement learning and allocate optimal resources to the JOS for execution of tasks present in offloading queue. For this machine learning approach is used to predict and allocate resources. The paper compares conventional and machine learning-based resource allocation methods. The machine learning approach performs better in terms of response time, delay, and energy consumption. The proposed algorithm shows that energy usage increases with task size, and response time increases with the number of users. Among the algorithms compared, JOS has the lowest waiting time, followed by DQN, while Q-learning performs the worst. Based on these findings, the paper recommends adopting the machine learning approach, specifically the JOS algorithm, for joint offloading and resource allocation

    AI-Empowered Fog/Edge Resource Management for IoT Applications: A Comprehensive Review, Research Challenges and Future Perspectives

    Get PDF
    • …
    corecore