390,942 research outputs found

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Active power control in a hybrid PV-storage power plant for frequency support

    Get PDF
    The recent increase of intermittent power generation plants connected to the electric power grids may stress the operation of power systems. So, grid codes started considering these power plants should con- tribute to the grid support functions. Recently, a power ramp rate limitation is being included in several grid codes, which is a challenge for photovoltaic installations due to the lack of inertia. This paper pre- sents a method to deal with the main grid code requirements considering a PV plant with an energy stor- age device, where a strict two-second time window ramp rate restriction is applied. A direct ramp rate control strategy is used, which includes a dynamic SOC control and battery support functionality for active power setpoint compliance. The control strategy is validated by simulations.Postprint (published version

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Self-oscillating control methods for the LCC current-output resonant converter

    Get PDF
    Abstract—A strategy for self-oscillating control of LCC current-output resonant converters, is presented, based on varying the phase-angle between the fundamental of the input voltage and current. Unlike other commonly employed control methodologies,the proposed technique is shown to provide a convenient, linear system input-output characteristic suitable for the design of regulators. The method is shown to have a similar effect as controlling the dc-link supply voltage, in terms of output-voltage/current control. The LCC converter variant is used as an application focus for demonstrating the presented techniques, with simulation and experimental measurements from a prototype converter being used to show the practical benefits. Third-order small and large-signal models are developed, and employed in the formulation of robust output-voltage and output-current control schemes. However, notably, the presented techniques are ultimately generic and readily applicable to other resonant converter variants

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System
    corecore