28,043 research outputs found

    A network mobility indicator using a fuzzy logic approach

    Get PDF
    This paper introduces a methodology to assess the mobility of a road transport network from the 3 network perspective. In this research, the mobility of the road transport network is defined as the 4 ability of the road transport network to connect all the origin-destination pairs within the network with 5 an acceptable level of service. Two mobility attributes are therefore introduced to assess the physical 6 connectivity and the road transport network level of service. Furthermore, a simple technique based 7 on a fuzzy logic approach is used to combine mobility attributes into a single mobility indicator in 8 order to measure the impact of disruptive events on road transport network functionality. 9 The application of the proposed methodology on a hypothetical Delft city network shows the ability of the technique to estimate variation in the level of mobility under different scenarios. The method allows the study of demand and supply side variations on overall network mobility, providing a new tool for decision makers in understanding the dynamic nature of mobility under various events. The method can also be used as an evaluation tool to gauge the highway network mobility level, and to highlight weaknesses in the network

    Methodological Developments in Human Development Literature

    Get PDF
    The present paper is a review of methodological advancements in human development literature starting from 1990 till date. While highlighting the contribution of UNDP to the concept of human development and construction of HDI it mentions that the introduced concept and method of measurement is a huge qualitative improvement over the earlier concept of growth and per capita GDP measurement. Although the human development report started with a poor methodology, thanks to the galaxy of scholars for their untiring efforts and invaluable contributions in the successive years that enabled UNDP in refining its methodology to a large extent. There is no denying fact that there is no end to refinements, the purpose for which Mahbub ul Haq struggled in his entire life has been served

    New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems

    Get PDF
    This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use

    Journal of Asian Finance, Economics and Business, v. 4, no. 1

    Get PDF

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments
    • …
    corecore