447 research outputs found

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    Motion Analysis for Experimental Evaluation of an Event-Driven FES System

    Get PDF
    In this work, a system for controlling Functional Electrical Stimulation (FES) has been experimentally evaluated. The peculiarity of the system is to use an event-driven approach to modulate stimulation intensity, instead of the typical feature extraction of surface ElectroMyoGraphic (sEMG) signal. To validate our methodology, the system capability to control FES was tested on a population of 17 subjects, reproducing 6 different movements. Limbs trajectories were acquired using a gold standard motion tracking tool. The implemented segmentation algorithm has been detailed, together with the designed experimental protocol. A motion analysis was performed through a multiparametric evaluation, including the extraction of features such as the trajectory area and the movement velocity. The obtained results show a median cross-correlation coefficient of 0.910 and a median delay of 800 ms, between each couple of voluntary and stimulated exercise, making our system comparable w.r.t. state-of-the-art works. Furthermore, a 97.39% successful rate on movement replication demonstrates the feasibility of the system for rehabilitation purposes

    Tutorial: A Versatile Bio-Inspired System for Processing and Transmission of Muscular Information

    Get PDF
    Device wearability and operating time are trending topics in recent state-of-art works on surface ElectroMyoGraphic (sEMG) muscle monitoring. No optimal trade-off, able to concurrently address several problems of the acquisition system like robustness, miniaturization, versatility, and power efficiency, has yet been found. In this tutorial we present a solution to most of these issues, embedding in a single device both an sEMG acquisition channel, with our custom event-driven hardware feature extraction technique (named Average Threshold Crossing), and a digital part, which includes a microcontroller unit, for (optionally) sEMG sampling and processing, and a Bluetooth communication, for wireless data transmission. The knowledge acquired by the research group brought to an accurate selection of each single component, resulting in a very efficient prototype, with a comfortable final size (57.8mm x 25.2mm x 22.1mm) and a consistent signal-to-noise ratio of the acquired sEMG (higher than 15 dB). Furthermore, a precise design of the firmware has been performed, handling both signal acquisition and Bluetooth transmission concurrently, thanks to a FreeRTOS custom implementation. In particular, the system adapts to both sEMG and ATC transmission, with an application throughput up to 2 kB s-1 and an average operating time of 80 h (for high resolution sEMG sampling), relaxable to 8Bs-1 throughput and about 230 h operating time (considering a 110mAh battery), in case of ATC acquisition only. Here we share our experience over the years in designing wearable systems for the sEMG detection, specifying in detail how our event-driven approach could benefit the device development phases. Some previous basic knowledge about biosignal acquisition, electronic circuits and programming would certainly ease the repeatability of this tutorial

    The reliability of methods to estimate the number and size of human motor units and their use with large limb muscles

    Get PDF
    Purpose: Current methods for estimating muscle motor unit (MU) number provide values which are remarkably similar for muscles of widely differing size, probably because surface electrodes sample from similar and relatively small volumes in each muscle. We have evaluated an alternative means of estimating MU number that takes into account differences in muscle size. Methods: Intramuscular motor unit potentials (MUPs) were recorded and muscle cross-sectional area (CSA) was measured using MRI to provide a motor unit number estimate (iMUNE). This was compared to the traditional MUNE method, using compound muscle action potentials (CMAP) and surface motor unit potentials (sMUPs) recorded using surface electrodes. Data were collected from proximal and distal regions of the vastus lateralis (VL) in young and old men while test–retest reliability was evaluated with VL, tibialis anterior and biceps brachii. Results: MUPs, sMUPs and CMAPs were highly reliable (r = 0.84–0.91). The traditional MUNE, based on surface recordings, did not differ between proximal and distal sites of the VL despite the proximal CSA being twice the distal CSA. iMUNE, however, gave values that differed between young and old and were proportional to the muscle size. Conclusion: When evaluating the contribution that MU loss makes to muscle atrophy, such as in disease or ageing, it is important to have a method such as iMUNE, which takes into account any differences in total muscle size

    Applications of EMG in Clinical and Sports Medicine

    Get PDF
    This second of two volumes on EMG (Electromyography) covers a wide range of clinical applications, as a complement to the methods discussed in volume 1. Topics range from gait and vibration analysis, through posture and falls prevention, to biofeedback in the treatment of neurologic swallowing impairment. The volume includes sections on back care, sports and performance medicine, gynecology/urology and orofacial function. Authors describe the procedures for their experimental studies with detailed and clear illustrations and references to the literature. The limitations of SEMG measures and methods for careful analysis are discussed. This broad compilation of articles discussing the use of EMG in both clinical and research applications demonstrates the utility of the method as a tool in a wide variety of disciplines and clinical fields

    Neuromechanics of maximum and explosive strength across knee-joint angles

    Get PDF
    The primary purpose of this thesis was to assess the effect of knee-joint angle on the neuromechanics of maximal and explosive contractions, specifically torque and neuromuscular activation, as well as the influence of isometric resistance training (RT) on these variables and thus joint angle specificity of training adaptations. It was found that electrode location had a pronounced effect on surface electromyography (sEMG) amplitude during maximum isometric voluntary contractions (MVCs) and moderate relationship between subcutaneous tissue thickness and sEMG amplitude (R2=0.31 up to 0.38) was reduced but not consistently removed by maximal M-Wave (MMAX) normalization [up to R2= 0.16 (peak-to-peak) and R2= 0.23 (Area)]. Thus, MMAX peak-to-peak was the better normalization parameter that removed the influence of electrode location and substantially reduced the influence of subcutaneous tissue thickness. Maximal torque-angle relationship presented an inverted U shape with both, agonist (measure by two different techniques) and antagonist neuromuscular activation both differing with knee-joint angle and thus, both likely contributing to the torque-angle relationship. Absolute explosive torque-angle relationship exhibited higher torques at mid-range knee joint angles in a similar manner to maximal strength, whilst the ability to explosively express the available torque (i.e. relative to maximal strength) revealed only subtle differences between joint angles. Agonist neuromuscular activation showed increases from extended to flexed positions during both maximum and explosive contractions (at all time points; ~6% to ~34%) and evoked contractile properties presented opposite patterns with twitch torque increasing (~5% to ~30%) and octet torque decreasing (~2% to ~14%) with knee flexion. Finally, after 4 weeks of RT at a 65° knee-joint angle evidence of joint angle specificity was provided from both within-group (greater gains at 3 angles than others) and between-group evidence (greater gains at 2 angles than others) for maximal strength but not for explosive strength and neuromuscular activation. In summary, this thesis demonstrated: (1) higher strength values at middle knee-joint positions than more flexed and/or extended positions during maximal and explosive contractions; (2) how agonist neuromuscular activation contributes to the beforementioned changes in strength; (3) how muscle contractile properties contribute to the explosive strength across knee-joint angles; and finally (4) that joint angle specificity has a neural basis
    • …
    corecore