790 research outputs found

    Teleoperation Methods for High-Risk, High-Latency Environments

    Get PDF
    In-Space Servicing, Assembly, and Manufacturing (ISAM) can enable larger-scale and longer-lived infrastructure projects in space, with interest ranging from commercial entities to the US government. Servicing, in particular, has the potential to vastly increase the usable lifetimes of satellites. However, the vast majority of spacecraft on low Earth orbit today were not designed to be serviced on-orbit. As such, several of the manipulations during servicing cannot easily be automated and instead require ground-based teleoperation. Ground-based teleoperation of on-orbit robots brings its own challenges of high latency communications, with telemetry delays of several seconds, and difficulties in visualizing the remote environment due to limited camera views. We explore teleoperation methods to alleviate these difficulties, increase task success, and reduce operator load. First, we investigate a model-based teleoperation interface intended to provide the benefits of direct teleoperation even in the presence of time delay. We evaluate the model-based teleoperation method using professional robot operators, then use feedback from that study to inform the design of a visual planning tool for this task, Interactive Planning and Supervised Execution (IPSE). We describe and evaluate the IPSE system and two interfaces, one 2D using a traditional mouse and keyboard and one 3D using an Intuitive Surgical da Vinci master console. We then describe and evaluate an alternative 3D interface using a Meta Quest head-mounted display. Finally, we describe an extension of IPSE to allow human-in-the-loop planning for a redundant robot. Overall, we find that IPSE improves task success rate and decreases operator workload compared to a conventional teleoperation interface

    The Journey Of The Lunar Flashlight Propulsion System From Launch Through End Of Mission

    Get PDF
    The Lunar Flashlight Propulsion System (LFPS) was developed as a technology demonstration to enable the Lunar Flashlight spacecraft to reach Lunar orbit and to desaturate onboard reaction wheels. While the system produced over 16 m/s of delta-v and successfully managed momentum, variable thrust performance, most likely due to debris in the propellant flow path, kept the spacecraft from reaching the Moon. This paper details the in-flight journey of the LFPS, highlighting both successes and challenges met throughout the mission, and provides lessons learned applicable to future CubeSat missions and additively manufactured propulsion systems

    The potential of international cooperation in the Azorean space strategy

    Get PDF
    Dissertação de Mestrado, Relações Internacionais: O Espaço Euro-Atlântico, 17 de março de 2023, Universidade dos Açores.Esta investigação pretende abordar a essência da cooperação internacional do setor espacial na Região Autónoma dos Açores. O estudo centra-se, por isso, nos impactos que terão na economia, na criação de emprego qualificado, desenvolvimento tecnológico, capacidade geográfica dos Açores e nas problemáticas que a Região enfrentará.ABSTRACT: This investigation aims to study the essence of international cooperation in the space sector in the Autonomous Region of the Azores. The study, therefore, focuses on the resulting impacts on the economy, the creation of qualified employment, technological development, the geographic capacity of the Azores and the problems that the Region will face

    Signal Structure of the Starlink Ku-Band Downlink

    Full text link
    We develop a technique for blind signal identification of the Starlink downlink signal in the 10.7 to 12.7 GHz band and present a detailed picture of the signal's structure. Importantly, the signal characterization offered herein includes the exact values of synchronization sequences embedded in the signal that can be exploited to produce pseudorange measurements. Such an understanding of the signal is essential to emerging efforts that seek to dual-purpose Starlink signals for positioning, navigation, and timing, despite their being designed solely for broadband Internet provision

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    A survey on deep learning-based monocular spacecraft pose estimation: Current state, limitations and prospects

    Get PDF
    peer reviewedEstimating the pose of an uncooperative spacecraft is an important computer vision problem for enabling the deployment of automatic vision-based systems in orbit, with applications ranging from on-orbit servicing to space debris removal. Following the general trend in computer vision, more and more works have been focusing on leveraging Deep Learning (DL) methods to address this problem. However and despite promising research-stage results, major challenges preventing the use of such methods in real-life missions still stand in the way. In particular, the deployment of such computation-intensive algorithms is still under-investigated, while the performance drop when training on synthetic and testing on real images remains to mitigate. The primary goal of this survey is to describe the current DL-based methods for spacecraft pose estimation in a comprehensive manner. The secondary goal is to help define the limitations towards the effective deployment of DL-based spacecraft pose estimation solutions for reliable autonomous vision-based applications. To this end, the survey first summarises the existing algorithms according to two approaches: hybrid modular pipelines and direct end-to-end regression methods. A comparison of algorithms is presented not only in terms of pose accuracy but also with a focus on network architectures and models' sizes keeping potential deployment in mind. Then, current monocular spacecraft pose estimation datasets used to train and test these methods are discussed. The data generation methods: simulators and testbeds, the domain gap and the performance drop between synthetically generated and lab/space collected images and the potential solutions are also discussed. Finally, the paper presents open research questions and future directions in the field, drawing parallels with other computer vision applications

    Autonomous Robots for Active Removal of Orbital Debris

    Full text link
    This paper presents a vision guidance and control method for autonomous robotic capture and stabilization of orbital objects in a time-critical manner. The method takes into account various operational and physical constraints, including ensuring a smooth capture, handling line-of-sight (LOS) obstructions of the target, and staying within the acceleration, force, and torque limits of the robot. Our approach involves the development of an optimal control framework for an eye-to-hand visual servoing method, which integrates two sequential sub-maneuvers: a pre-capturing maneuver and a post-capturing maneuver, aimed at achieving the shortest possible capture time. Integrating both control strategies enables a seamless transition between them, allowing for real-time switching to the appropriate control system. Moreover, both controllers are adaptively tuned through vision feedback to account for the unknown dynamics of the target. The integrated estimation and control architecture also facilitates fault detection and recovery of the visual feedback in situations where the feedback is temporarily obstructed. The experimental results demonstrate the successful execution of pre- and post-capturing operations on a tumbling and drifting target, despite multiple operational constraints

    Mars delivery service - development of the electro-mechanical systems of the Sample Fetch Rover for the Mars Sample Return Campaign

    Get PDF
    This thesis describes the development of the Sample Fetch Rover (SFR), studied for Mars Sample Return (MSR), an international campaign carried out in cooperation between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The focus of this document is the design of the electro-mechanical systems of the rover. After placing this work into the general context of robotic planetary exploration and summarising the state of the art for what concerns Mars rovers, the architecture of the Mars Sample Return Campaign is presented. A complete overview of the current SFR architecture is provided, touching upon all the main subsystems of the spacecraft. For each area, it is discussed what are the design drivers, the chosen solutions and whether they use heritage technology (in particular from the ExoMars Rover) or new developments. This research focuses on two topics of particular interest, due to their relevance for the mission and the novelty of their design: locomotion and sample acquisition, which are discussed in depth. The early SFR locomotion concepts are summarised, covering the initial trade-offs and discarded designs for higher traverse performance. Once a consolidated architecture was reached, the locomotion subsystem was developed further, defining the details of the suspension, actuators, deployment mechanisms and wheels. This technology is presented here in detail, including some key analysis and test results that support the design and demonstrate how it responds to the mission requirements. Another major electro-mechanical system developed as part of this work is the one dedicated to sample tube acquisition. The concept of operations of this machinery was defined to be robust against the unknown conditions that characterise the mission. The design process led to a highly automated robotic system which is described here in its main components: vision system, robotic arm and tube storage

    A Bibliography of NPS Space Systems Related Student Research, 2013-2022

    Get PDF
    Dudley Knox Library, Naval Postgraduate School.Approved for Public Release; distribution is unlimite

    Naval Postgraduate School Academic Catalog - February 2023

    Get PDF
    • …
    corecore