2,782 research outputs found

    ILR Research in Progress 2013-14

    Get PDF
    The production of scholarly research continues to be one of the primary missions of the ILR School. During a typical academic year, ILR faculty members published or had accepted for publication over 25 books, edited volumes, and monographs, 170 articles and chapters in edited volumes, numerous book reviews. In addition, a large number of manuscripts were submitted for publication, presented at professional association meetings, or circulated in working paper form. Our faculty's research continues to find its way into the very best industrial relations, social science and statistics journals.Research_in_Progress_2013_14.pdf: 54 downloads, before Oct. 1, 2020

    Applying the lessons of the attack on the World Trade Center, 11th September 2001, to the design and use of interactive evacuation simulations

    Get PDF
    The collapse of buildings, such as terminal 2E at Paris' Charles de Gaule Airport, and of fires, such as the Rhode Island, Station Night Club tragedy, has focused public attention on the safety of large public buildings. Initiatives in the United States and in Europe have led to the development of interactive simulators that model evacuation from these buildings. The tools avoid some of the ethical and legal problems from simulating evacuations; many people were injured during the 1993 evacuation of the World Trade Center (WTC) complex. They also use many concepts that originate within the CHI communities. For instance, some simulators use simple task models to represent the occupants' goal structures as they search for an available exit. However, the recent release of the report from the National Commission on Terrorist Attacks upon the United States (the '9/11 commission') has posed serious questions about the design and use of this particular class of interactive systems. This paper argues that simulation research needs to draw on insights from the CHI communities in order to meet some the challenges identified by the 9/11 commission

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Lessons from the evacuation of the World Trade Center, Sept 11th 2001 for the future development of computer simulations

    Get PDF
    This paper provides an overview of the state of the art in evacuation simulations. These interactive computer based tools have been developed to help the owners and designers of large public buildings to assess the risks that occupants might face during emergency egress. The development of the Glasgow Evacuation Simulator is used to illustrate the existing generation of tools. This system uses Monte Carlo techniques to control individual and group movements during an evacuation. The end-user can interactively open and block emergency exits at any point. It is also possible to alter the priorities that individuals associate with particular exit routes. A final benefit is that the tool can derive evacuation simulations directly from existing architects models; this reduces the cost of simulations and creates a more prominent role for these tools in the iterative development of large-scale public buildings. Empirical studies have been used to validate the GES system as a tool to support evacuation training. The development of these tools has been informed by numerous human factors studies and by recent accident investigations. For example, the 2003 fire in the Station nightclub in Rhode Island illustrated the way in which most building occupants retrace their steps to an entrance even when there are alternate fire exits. The second half of this paper uses this introduction to criticise the existing state of the art in evacuation simulations. These criticisms are based on a detailed study of the recent findings from the 9/11 Commission (2004). Ten different lessons are identified. Some relate to the need to better understand the role of building management and security systems in controlling egress from public buildings. Others relate to the human factors involved in coordinating distributed groups of emergency personnel who may be physically exhausted by the demands of an evacuation. Arguably the most important findings centre on the need to model the ingress and egress of emergency personnel from these structures. The previous focus of nearly all-existing simulation tools has been on the evacuation of building occupants rather than on the safety of first responders1

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 156)

    Get PDF
    This bibliography lists 170 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1976

    Assessment of accident investigation methods for wildland firefighting incidents by case study method

    Get PDF

    Haptic Interaction with a Guide Robot in Zero Visibility

    Get PDF
    Search and rescue operations are often undertaken in dark and noisy environment in which rescue team must rely on haptic feedback for exploration and safe exit. However, little attention has been paid specifically to haptic sensitivity in such contexts or the possibility of enhancing communicational proficiency in the haptic mode as a life-preserving measure. The potential of root swarms for search and rescue has been shown by the Guardians project (EU, 2006-2010); however the project also showed the problem of human robot interaction in smoky (non-visibility) and noisy conditions. The REINS project (UK, 2011-2015) focused on human robot interaction in such conditions. This research is a body of work (done as a part of he REINS project) which investigates the haptic interaction of a person wit a guide robot in zero visibility. The thesis firstly reflects upon real world scenarios where people make use of the haptic sense to interact in zero visibility (such as interaction among firefighters and symbiotic relationship between visually impaired people and guide dogs). In addition, it reflects on the sensitivity and trainability of the haptic sense, to be used for the interaction. The thesis presents an analysis and evaluation of the design of a physical interface (Designed by the consortium of the REINS project) connecting the human and the robotic guide in poor visibility conditions. Finally, it lays a foundation for the design of test cases to evaluate human robot haptic interaction, taking into consideration the two aspects of the interaction, namely locomotion guidance and environmental exploration

    Contributions to deconfliction advanced U-space services for multiple unmanned aerial systems including field tests validation

    Get PDF
    Unmanned Aerial Systems (UAS) will become commonplace, the number of UAS flying in European airspace is expected to increase from a few thousand to hundreds of thousands by 2050. To prepare for this approaching, national and international organizations involved in aerial traffic management are now developing new laws and restructuring the airspace to incorporate UAS into civil airspace. The Single European Sky ATM Research considers the development of the U-space, a crucial step to enable the safe, secure, and efficient access of a large set of UAS into airspace. The design, integration, and validation of a set of modules that contribute to our UTM architecture for advanced U-space services are described in this Thesis. With an emphasis on conflict detection and resolution features, the architecture is flexible, modular, and scalable. The UTM is designed to work without the need for human involvement, to achieve U-space required scalability due to the large number of expected operations. However, it recommends actions to the UAS operator since, under current regulations, the operator is accountable for carrying out the recommendations of the UTM. Moreover, our development is based on the Robot Operating System (ROS) and is open source. The main developments of the proposed Thesis are monitoring and tactical deconfliction services, which are in charge of identifying and resolving possible conflicts that arise in the shared airspace of several UAS. By limiting the conflict search to a local search surrounding each waypoint, the proposed conflict detection method aims to improve conflict detection. By splitting the issue down into smaller subproblems with only two waypoints, the conflict resolution method tries to decrease the deviation distance from the initial flight plan. The proposed method for resolving potential threats is based on the premise that UAS can follow trajectories in time and space properly. Therefore, another contribution of the presented Thesis is an UAS 4D trajectory follower that can correct space and temporal deviations while following a given trajectory. Currently, commercial autopilots do not offer this functionality that allows to improve the airspace occupancy using time as an additional dimension. Moreover, the integration of onboard detect and avoid capabilities, as well as the consequences for U-space services are examined in this Thesis. A module capable of detecting large static unexpected obstacles and generating an alternative route to avoid the obstacle online is presented. Finally, the presented UTM architecture has been tested in both software-in-theloop and hardware-in-the-loop development enviroments, but also in real scenarios using unmanned aircraft. These scenarios were designed by selecting the most relevant UAS operation applications, such as the inspection of wind turbines, power lines and precision agriculture, as well as event and forest monitoring. ATLAS and El Arenosillo were the locations of the tests carried out thanks to the European projects SAFEDRONE and GAUSS.Los sistemas aéreos no tripulados (UAS en inglés) se convertirán en algo habitual. Se prevé que el número de UAS que vuelen en el espacio aéreo europeo pase de unos pocos miles a cientos de miles en 2050. Para prepararse para esta aproximación, las organizaciones nacionales e internacionales dedicadas a la gestión del tráfico aéreo están elaborando nuevas leyes y reestructurando el espacio aéreo para incorporar los UAS al espacio aéreo civil. SESAR (del inglés Single European Sky ATM Research) considera el desarrollo de U-space, un paso crucial para permitir el acceso seguro y eficiente de un gran conjunto de UAS al espacio aéreo. En esta Tesis se describe el diseño, la integración y la validación de un conjunto de módulos que contribuyen a nuestra arquitectura UTM (del inglés Unmanned aerial system Traffic Management) para los servicios avanzados del U-space. Con un énfasis en las características de detección y resolución de conflictos, la arquitectura es flexible, modular y escalable. La UTM está diseñada para funcionar sin necesidad de intervención humana, para lograr la escalabilidad requerida por U-space debido al gran número de operaciones previstas. Sin embargo, la UTM únicamente recomienda acciones al operador del UAS ya que, según la normativa vigente, el operador es responsable de las operaciones realizadas. Además, nuestro desarrollo está basado en el Sistema Operativo de Robots (ROS en inglés) y es de código abierto. Los principales desarrollos de la presente Tesis son los servicios de monitorización y evitación de conflictos, que se encargan de identificar y resolver los posibles conflictos que surjan en el espacio aéreo compartido de varios UAS. Limitando la búsqueda de conflictos a una búsqueda local alrededor de cada punto de ruta, el método de detección de conflictos pretende mejorar la detección de conflictos. Al dividir el problema en subproblemas más pequeños con sólo dos puntos de ruta, el método de resolución de conflictos intenta disminuir la distancia de desviación del plan de vuelo inicial. El método de resolución de conflictos propuesto se basa en la premisa de que los UAS pueden seguir las trayectorias en el tiempo y espacio de forma adecuada. Por tanto, otra de las aportaciones de la Tesis presentada es un seguidor de trayectorias 4D de UAS que puede corregir las desviaciones espaciales y temporales mientras sigue una trayectoria determinada. Actualmente, los autopilotos comerciales no ofrecen esta funcionalidad que permite mejorar la ocupación del espacio aéreo utilizando el tiempo como una dimensión adicional. Además, en esta Tesis se examina la capacidad de integración de módulos a bordo de detección y evitación de obstáculos, así como las consecuencias para los servicios de U-space. Se presenta un módulo capaz de detectar grandes obstáculos estáticos inesperados y capaz de generar una ruta alternativa para evitar dicho obstáculo. Por último, la arquitectura UTM presentada ha sido probada en entornos de desarrollo de simulación, pero también en escenarios reales con aeronaves no tripuladas. Estos escenarios se diseñaron seleccionando las aplicaciones de operación de UAS más relevantes, como la inspección de aerogeneradores, líneas eléctricas y agricultura de precisión, así como la monitorización de eventos y bosques. ATLAS y El Arenosillo fueron las sedes de las pruebas realizadas gracias a los proyectos europeos SAFEDRONE y GAUSS

    Using the Body to Investigate the Impact of Verbal and Physical Aggression While Working on an Acute Psychiatric Unit: An Artistic Inquiry Through Movement

    Get PDF
    The purpose of my research is to investigate how adverse experiences can be a source of emotional positive transformation and growth. Using artistic inquiry, I hope to address the questions, “How can I maintain a sense of safety in an unsafe and ever-changing environment such as the inpatient psychiatric unit” and “How does my passion for dance/movement help me to survive and nurture self under these circumstances?” Using movement as my primary expressive medium, I will explore common themes and patterns that may arise through videoing and journaling my processes in response to these questions. Through an understanding of my body-mind dynamics, it may increase my belief that in going to the “darkness” or enduring traumatizing life experiences, one can find possibility for renewal

    Called to volunteer and stay longer:the significance of work calling for volunteering motivation and retention

    Get PDF
    This article reviews the literature on non-profit volunteering to argue that the concept of 'work calling' is critical to broadening the understanding of volunteer motivation and retention. As an emerging concept, work calling is generally used to explain how individuals satisfy their calling by doing meaningful work. This concept is introduced to the issue of volunteer motivation and retention to detail why volunteers decide to join non-profit organisations and then willingly stay longer. Current theories explain volunteer motivation and retention by focusing on individual (commitment and job satisfaction) and organisational factors (management practices, volunteer tasks, and organisational reputation). This article integrates work calling in these theories and thus contributes two important insights: (1) volunteers may choose to engage in meaningful work and, therefore, experience self-satisfaction and meaningful life by volunteering; and (2) work calling improves current theories of volunteering motivation and retention at both the individual and organisational levels
    corecore