5,615 research outputs found

    Changes in the soil organic carbon balance on China’s cropland during the last two decades of the 20th century

    Get PDF
    Agro-ecosystems play an important role in regulating global changes caused by greenhouse gas emissions. Restoration of soil organic carbon (SOC) in agricultural soils can not only improve soil quality but also influence climate change and agronomic productivity. With about half of its land area under agricultural use, China exhibits vast potential for carbon (C) sequestration that needs to be researched. Chinese cropland has experienced SOC change over the past century. The study of SOC dynamics under different bioclimatic conditions and cropping systems can help us to better understand this historical change, current status, the impacts of bioclimatic conditions on SOC and future trends. We used a simulation based on historical statistical data to analyze the C balance of Chinese croplands during the 1980s and 1990s, taking into account soil, climate and agricultural management. Nationwide, 77.6% of the national arable land is considered to be in good condition. Appropriate farm management practices should be adopted to improve the poor C balance of the remaining 22.4% of cropland to promote C sequestration

    Remotely sensed mid-channel bar dynamics in downstream of the Three Gorges Dam, China

    Get PDF
    The downstream reach of the Three Gorges Dam (TGD) along the Yangtze River (1560 km) hosts numerous mid-channel bars (MCBs). MCBs dynamics are crucial to the river’s hydrological processes and local ecological function. However, a systematic understanding of such dynamics and their linkage to TGD remains largely unknown. Using Landsat-image-extracted MCBs and several spatial-temporal analysis methods, this study presents a comprehensive understanding of MCB dynamics in terms of number, area, and shape, over downstream of TGD during the period 1985−2018. On average, a total of 140 MCBs were detected and grouped into four types representing small ( 2 km2), middle (2 km2 − 7 km2), large (7 km2 − 33 km2) and extra-large size (>33 km2) MCBs, respectively. MCBs number decreased after TGD closure but most of these happened in the lower reach. The area of total MCBs experienced an increasing trend (2.77 km2/yr, p-value 0.01) over the last three decades. The extra-large MCBs gained the largest area increasing rate than the other sizes of MCBs. Small MCBs tended to become relatively round, whereas the others became elongate in shape after TGD operation. Impacts of TGD operation generally diminished in the longitudinal direction from TGD to Hankou and from TGD to Jiujiang for shape and area dynamics, respectively. The quantified longitudinal and temporal dynamics of MCBs across the entire Yangtze River downstream of TGD provides a crucial monitoring basis for continuous investigation of the changing mechanisms affecting the morphology of the Yangtze River system

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Risk assessment, study and management on navigational safety in the Yangtze River during dry season

    Get PDF

    Spatiotemporal variation of the quality, origin, and age of particulate organic matter transported by the Yangtze River (Changjiang)

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 123 (2018): 2908-2921, doi:10.1029/2017JG004285.Information on the age dynamics of particulate organic matter (POM) in large river systems is currently sparse and represents an important knowledge gap in our understanding of the global carbon cycle. Here we examine variations in organic geochemical characteristics of suspended sediments from the Changjiang (Yangtze River) system collected between 1997 and 2010. Higher particulate organic carbon content (POC%) values were observed in the middle reach, especially after 2003, and are attributed to the increase of in situ (aquatic) primary production associated with decreased total suspended matter concentrations. Corresponding Δ14C values from depth profiles taken in 2009 and 2010 indicate spatial and temporal variations in POC sources within the basin. Two isotopic mass balance approaches were explored to quantitatively apportion different sources of Changjiang POM. Results indicate that contributions of biomass and pre‐aged soil organic matter are dominant, regardless of hydrological conditions, with soil‐derived organic carbon comprising 17–56% of POC based on a Monte Carlo three‐end‐member mixing model. In contrast, binary mixing model calculations suggest that up to 80% of POC (2009 samples only) derived from biospheric sources. The emplacement of the Three Gorges Dam and resulting trapping of sediment from the upper reach of the watershed resulted in a modification of POM 14C ages in the reservoir. With the resulting decline in sediment load and increase in the proportion of modern POC in the lower reach, these changes in POM flux and composition of the Changjiang have significant implications for downstream carbon cycle processes.Natural Science Foundation of China Grant Numbers: 41530960, 412760812019-03-1

    Temporal variation in riverine organic carbon concentrations and fluxes in two contrasting estuary systems: Geum and Seomjin, South Korea

    Get PDF
    In this study, surface water samples were collected at sites located in the lowest reaches of closed (Geum) (i.e. with an estuary dam at the river mouth) and open (Seomjin) estuary systems between May 2016 and May 2018. We analyzed concentrations and stable isotopes of particulate organic carbon (POC) and dissolved organic carbon (DOC) to assess OC sources, to estimate fluxes of riverine OC, and to assess some of the factors driving OC exports in these two contrasting Korean estuary systems. Our geochemical results suggest that the contribution of the phytoplankton-derived POC to the total POC pool was larger in the Geum River than in the Seomjin River. Notably, a heavy riverine algae bloom occurred in the Geum River in August 2016, resulting in a high carbon isotopic composition (-19.4%) together with low POC/PN ratio (˂ 10) and POC/Chl-a ratio (˂ 100). In contrast, potential DOC sources in both the Geum River and the Seomjin River were a mixture of C3-derived forest soils and cropland organic matter. During the study period, the catchment area-normalized fluxes of POC and DOC were 0.40x10(-3) tC/km(2)/yr and 6.5x10(-2) tC/km(2)/yr in the Geum River and 5.2x10(-4) tC/km(2)/yr and 8.6x10(-4) tC/km(2)/yr in the Seomjin River, respectively. It appears that the POC flux was more weakly associated with the water discharge in the Geum River than in the Seomjin River, but the DOC fluxes were in general controlled by the water discharges in both rivers. Accordingly, the estuary dam of the Geum River might be one of the most strongly influencing factors on seasonal patterns in POC fluxes into the adjacent coastal seas, strongly modifying water residence times and thus biogeochemical processes.We would like to thank Dokyun Kim, Ji Hwan Hwang, Jong-Ku Gal, Dong-Hun Lee, Dahae Kim, and Solbin Kim for their assistance during fieldwork. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (MSIT) -South Korea [NRF-2016R1A2B3015388, KOPRI-PN19100]

    Erosion-deposition patterns and depo-center movements in branching channels at the near-estuary reach of the Yangtze River

    Get PDF
    Channel evolution and depo-center migrations in braided reaches are significantly influenced by variations in runoff. This study examines the effect of runoff variations on the erosion-deposition patterns and depocenter movements within branching channels of the near-estuary reach of the Yangtze River. We assume that variations in annual mean duration days of runoff discharges, ebb partition ratios in branching channels, and the erosional/depositional rates of entire channels and sub-reaches are representative of variations in runoff intensity, flow dynamics in branching channels, and morphological features in the channels. Our results show that the north region of Fujiangsha Waterway, the Liuhaisha branch of Rugaosha Waterway, the west branch of Tongzhousha Waterway, and the west branch of Langshansha Waterway experience deposition or reduced erosion under low runoff intensity, and erosion or reduced deposition under high runoff intensity, with the depocenters moving upstream and downstream, respectively. Other waterway branches undergo opposite trends in erosion-deposition patterns and depo-center movements as the runoff changes. These morphological changes may be associated with trends in ebb partition ratio as the runoff discharge rises and falls. By flattening the intra-annual distribution of runoff discharge, dam construction in the Yangtze Basin has altered the ebb partition ratios in waterway branches, affecting their erosion-deposition patterns and depo-center movements. Present trends are likely to continue into the future due to the succession of large cascade dams under construction along the upper Yangtze and ongoing climate change
    corecore