1,716 research outputs found

    Icing Effects on Power Lines and Anti-icing and De-icing Methods

    Get PDF
    Icing on power lines may lead to compromise safety and reliability of electric supply network. Prolong icing can lead to power breakdown and collapse of towers. Since power transmission lines are mostly overhead and could face the direct impact of icing, and it is one of the main challenges faced by power distribution companies in cold regions. When the ice accretion crosses the safety limit then deicing action can be carried out. We can find number of deicing methods that are used in different parts of the world. However, all of these deicing techniques have their own advantages and disadvantages on implementation. It is one of the most difficult as well as dangerous process to perform deicing on power lines. If a fault is detected and that has been occurred due to icing or during routine maintenance, extra care must be taken in order to ensure safety of the personals when performing de-icing of lines. However, as technology evolved, new ways and techniques are adopted with the help of sensors that give quick feedback to control room in the national grid via wireless communication network for real time action. In the thesis we have discussed atmospheric icing impacts on power lines in the cold regions across the world. A literature review has been done for anti-icing and deicing methods that are currently adopted in the power distribution network. Methods that are used against ice buildups have also been analyzed. This work also shows the impacts of icing and deicing techniques presently adopted, and also throws light on their pros and cons during maintenance operations. It provides an overview of the evolving technology trends that are practiced to ensure the availability of existing power transmission system in cold climate regions

    Icing and Anti-Icing of Railway Contact Wires

    Get PDF

    Atmospheric Ice Accretion on Railway Overhead Powerline Conductors- A Numerical Case Study

    Get PDF
    Ice accretion on railway overhead contact wires/conductors can cause various critical operational and safety issues such as overloading, arc formation, mass imbalance, and wire galloping. The focus of this multiphase numerical study is to understand and analyze the ice accretion physics on railway overhead powerline conductors at various operating conditions. In this regard, two different geometric shape conductors of 12 mm diameter, 1) a grooved shape contact wire (like an actual railway conductor); 2) a standard circular shape contact wire are used. Computational Fluid Dynamics (CFD) based numerical simulations are carried out for both geometric configurations at different operating parameters such as wind speed, Liquid Water Content (LWC), cloud droplet size distribution, Median Volume Diameter (MVD), and atmospheric temperature. Analysis shows that variation in the operating weather parameters for both geometric configurations considerably affect the ice accretion, both in terms of accreted ice thickness and mass

    Joint Wind and Ice Effects on Transmission Lines in Mountainous Terrain

    Get PDF
    Atmospheric icing on mountainous terrain can produce catastrophic damages to transmission lines when incoming particles impinge and accrete on the cable surface of the system. The first challenge in wind-ice loading is determining joint statistics of wind and ice accretion on transmission lines. This study analyzes the weather characteristics for a specific site of study using 15 years of historical data to use as inputs for ice accretion modeling. The joint wind and ice hazard is characterized by simulating 500 years of icing events from the fitted probability distributions of ice accretion and wind on ice velocities. The second challenge of wind and ice loading is to deal with the wind induced vibrations when the iced conductors present complex asymmetrical shapes. The vertical galloping, characterized by high amplitude and low frequency motions, produce extra tension to the transmission towers which is not considered in the Canadian standard (CSA-C22.3) for the design of wind and ice loads for overhead transmission lines. For the dynamic analysis, the Den Hartog’s principle is applied to identify potential instabilities and the linear theory of free vibrations of a suspended cable is performed for the estimation of the extra tension produced by the free stream velocity acting on the one-degree-of-freedom iced conductor. The static and dynamic loading resulting from the present study are compared with the wind and ice design cases based on the Canadian standard (CSA-C22.3)

    Mitigation of conductor line galloping by a direct cable-connection to non-conductive composite power pylons

    Get PDF
    Steel lattice towers with suspended insulator strings are typically used to carry high-voltage overhead transmission lines. The installation of non-conductive power pylons made of glass fibre reinforced plastics enables a direct cable-pylon connection, as the composite structure acts as an unibody insulator. At the same time, wind-induced vibrations, such as the severe cable vibration phenomenon galloping, will consequently be directly transferred to the slender composite mast structure, potentially leading to extensive damage. The aim of the study is therefore to investigate the galloping behaviour of iced conductor lines with regard to different cable support conditions. Furthermore, additional damping in the composite power pylon structure is assumed to mitigate conductor line galloping and therefore reduce the risk of phase flash-overs between adjacent conductor lines. A numerical galloping simulation is carried out in order to evaluate the effect of a rigid cable-pylon connection with enhanced damping properties on the cable vibration amplitudes. A pylon-cable system, consisting of 3×300 m spans, is investigated. It was found that the support conditions of the conductor lines have a significant influence on the galloping mode, the vibration amplitudes and the orientation of the characteristic galloping ellipse. The addition of damping to the pylon decreases the vibration amplitudes slightly and leads to a re-orientation of the galloping ellipse
    • …
    corecore