674 research outputs found

    Observations of GPS ionospheric scintillations over Wuhan during geomagnetic storms

    No full text
    International audienceDuring the two geomagnetic storms which occurred on 1 October 2002 and 22 January 2004, the strong ionospheric scintillations of the GPS L1 band were observed at Wuhan station (30.6° N, 114.4° E, 45.8° Dip), which is situated near the northern crest of the equatorial ionosphere anomaly. We found that the intense scintillations were associated with the main phases of the storms and were co-located with the enhancement of the equatorial ionization anomaly (EIA); the co-existence of large- and small-scale irregularities at post-midnight was also found. The results may be relevant regarding the influence of the equatorial ionospheric eastward electric field during geomagnetic storms. On the other hand, GPS L1 band scintillations were not observed during the other two similar storms on 16 July 2003 and 20 November 2003. One of the reasons is probably that the sporadic E layer observed at the storms inhibited the generation of spread F by changing the Pedersen conductivity and suppressing the upward plasma drift

    Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure

    Get PDF
    Extreme space weather due to coronal mass ejections has the potential to cause considerable disruption to the global economy by damaging the transformers required to operate electricity transmission infrastructure. However, expert opinion is split between the potential outcome being one of a temporary regional blackout and of a more prolonged event. The temporary blackout scenario proposed by some is expected to last the length of the disturbance, with normal operations resuming after a couple of days. On the other hand, others have predicted widespread equipment damage with blackout scenarios lasting months. In this paper we explore the potential costs associated with failure in the electricity transmission infrastructure in the U.S. due to extreme space weather, focusing on daily economic loss. This provides insight into the direct and indirect economic consequences of how an extreme space weather event may affect domestic production, as well as other nations, via supply chain linkages. By exploring the sensitivity of the blackout zone, we show that on average the direct economic cost incurred from disruption to electricity represents only 49% of the total potential macroeconomic cost. Therefore, if indirect supply chain costs are not considered when undertaking cost-benefit analysis of space weather forecasting and mitigation investment, the total potential macroeconomic cost is not correctly represented. The paper contributes to our understanding of the economic impact of space weather, as well as making a number of key methodological contributions relevant for future work. Further economic impact assessment of this threat must consider multiday, multiregional event

    From the Sun to Earth: effects of the 25 August 2018 geomagnetic storm

    Get PDF
    Abstract. On 25 August 2018 the interplanetary counterpart of the 20 August 2018 coronal mass ejection (CME) hit Earth, giving rise to a strong G3 geomagnetic storm. We present a description of the whole sequence of events from the Sun to the ground as well as a detailed analysis of the observed effects on Earth's environment by using a multi-instrumental approach. We studied the ICME (interplanetary-CME) propagation in interplanetary space up to the analysis of its effects in the magnetosphere, ionosphere and at ground level. To accomplish this task, we used ground- and space-collected data, including data from CSES (China Seismo-Electric Satellite), launched on 11 February 2018. We found a direct connection between the ICME impact point on the magnetopause and the pattern of Earth's auroral electrojets. Using the Tsyganenko TS04 model prevision, we were able to correctly identify the principal magnetospheric current system activating during the different phases of the geomagnetic storm. Moreover, we analysed the space weather effects associated with the 25 August 2018 solar event in terms of the evaluation of geomagnetically induced currents (GICs) and identification of possible GPS (Global Positioning System) losses of lock. We found that, despite the strong geomagnetic storm, no loss of lock had been detected. On the contrary, the GIC hazard was found to be potentially more dangerous than other past, more powerful solar events, such as the 2015 St Patrick's Day geomagnetic storm, especially at latitudes higher than 60∘ in the European sector

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Geodetic Sciences

    Get PDF
    Space geodetic techniques, e.g., global navigation satellite systems (GNSS), Very Long Baseline Interferometry (VLBI), satellite gravimetry and altimetry, and GNSS Reflectometry & Radio Occultation, are capable of measuring small changes of the Earth�s shape, rotation, and gravity field, as well as mass changes in the Earth system with an unprecedented accuracy. This book is devoted to presenting recent results and development in space geodetic techniques and sciences, including GNSS, VLBI, gravimetry, geoid, geodetic atmosphere, geodetic geophysics and geodetic mass transport associated with the ocean, hydrology, cryosphere and solid-Earth. This book provides a good reference for geodetic techniques, engineers, scientists as well as user community

    Global Risks 2012, Seventh Edition

    Get PDF
    The World Economic Forum's Global Risks 2012 report is based on a survey of 469 experts from industry, government, academia and civil society that examines 50 global risks across five categories. The report emphasizes the singular effect of a particular constellation of global risks rather than focusing on a single existential risk. Three distinct constellations of risks that present a very serious threat to our future prosperity and security emerged from a review of this year's set of risks. Includes a special review of the important lessons learned from the 2011 earthquake, tsunami and the subsequent nuclear crisis at Fukushima, Japan. It focuses on therole of leadership, challenges to effective communication in this information age and resilient business models in response to crises of unforeseen magnitude

    A case study based on ground observations of the conjugate ionospheric response to interplanetary shock in polar regions

    Get PDF
    Data acquired by imaging relative ionospheric opacity meters (riometers), ionospheric total electron content (TEC) monitors, and three-wavelength auroral imagers at the conjugate Zhongshan station (ZHS) in Antarctica and Yellow River station (YRS) in the Arctic were analyzed to investigate the response of the polar ionosphere to an interplanetary shock event induced by solar flare activity on July 12, 2012. After the arrival of the interplanetary shock wave at the magnetosphere at approximately 18:10 UT, significantly enhanced auroral activity was observed by the auroral imagers at the ZHS. Additionally, the polar conjugate observation stations in both hemispheres recorded notable evolution in the two-dimensional movement of cosmic noise absorption. Comparison of the ionospheric TEC data acquired by the conjugate pair showed that the TEC at both sites increased considerably after the interplanetary shock wave arrived, although the two stations featured different sunlight conditions (polar night in July in the Antarctic region and polar day in the Arctic region). However, the high-frequency (HF) coherent radar data demonstrated that different sources might be responsible for the electron density enhancement in the ionosphere. During the Arctic polar day period in July, the increased electron density over YRS might have been caused by anti-sunward convection of the plasma irregularity, whereas in Antarctica during the polar night, the increased electron density over ZHS might have been caused by energetic particle precipitation from the magnetotail. These different physical processes might be responsible for the different responses of the ionosphere at the two conjugate stations in response to the same interplanetary shock event

    Interhemispheric transport of metallic ions within ionospheric sporadic E layers by the lower thermospheric meridional circulation

    Get PDF
    Long-lived metallic ions in the Earth’s atmosphere/ionosphere have been investigated for many decades. Although the seasonal variation in ionospheric ‘sporadic E’ layers was first observed in the 1960s, the mechanism driving the variation remains a long-standing mystery. Here we report a study of ionospheric irregularities using scintillation data from COSMIC satellites and identify a large-scale horizontal transport of long-lived metallic ions, combined with the simulations of the Whole Atmosphere Community Climate Model with the chemistry of metals and ground-based observations from two meridional chains of stations from 1975–2016. We find that the lower thermospheric meridional circulation influences the meridional transport and seasonal variations of metallic ions within sporadic E layers. The winter-to-summer, meridional velocity of ions is estimated to vary between -1.08 and 7.45 m/s at altitudes of 107–118 km between 10�–60�N latitude. Our results not only provide strong support for the lower thermospheric meridional circulation predicted by a whole atmosphere chemistry-climate model, but also emphasise the influences of this winter-to-summer circulation on the large-scale interhemispheric transport of composition in the thermosphere/ionosphere

    Review of Environmental Monitoring by Means of Radio Waves in the Polar Regions: From Atmosphere to Geospace

    Get PDF
    The Antarctic and Arctic regions are Earth's open windows to outer space. They provide unique opportunities for investigating the troposphere–thermosphere–ionosphere–plasmasphere system at high latitudes, which is not as well understood as the mid- and low-latitude regions mainly due to the paucity of experimental observations. In addition, different neutral and ionised atmospheric layers at high latitudes are much more variable compared to lower latitudes, and their variability is due to mechanisms not yet fully understood. Fortunately, in this new millennium the observing infrastructure in Antarctica and the Arctic has been growing, thus providing scientists with new opportunities to advance our knowledge on the polar atmosphere and geospace. This review shows that it is of paramount importance to perform integrated, multi-disciplinary research, making use of long-term multi-instrument observations combined with ad hoc measurement campaigns to improve our capability of investigating atmospheric dynamics in the polar regions from the troposphere up to the plasmasphere, as well as the coupling between atmospheric layers. Starting from the state of the art of understanding the polar atmosphere, our survey outlines the roadmap for enhancing scientific investigation of its physical mechanisms and dynamics through the full exploitation of the available infrastructures for radio-based environmental monitoring

    NMDB@Athens: Proceedings of the hybrid symposium on cosmic ray studies with neutron detectors, September 26-30, 2022

    Get PDF
    This volume documents the papers presented at the hybrid symposium on cosmic ray studies with neutron monitors in Athens in September 2022. The contributions are dedicated to six topics: cosmic rays in the heliosphere, GLE analysis and space weather research, cosmic rays and the Earth's atmosphere, instrumentation and stability of neutron detectors, their response functions, and the data bases and catalogues of the Real-Time database for high resolution Neutron Monitor measurements (NMDB) project, which are freely accessible to a large user community.Der Band dokumentiert die auf dem hybriden Symposium zur Untersuchung kosmischer Strahlung mit Neutronenmonitoren im September 2022 in Athen präsentierten wissenschaftlichen Arbeiten. Die Beiträge sind sechs Themenfeldern gewidmet: der kosmischen Strahlung in der Heliosphäre, der GLE-Analyse und Weltraumwetterforschung, der kosmischen Strahlung und der Atmosphäre, der kosmischen Strahlung in der Erdatmosphäre, der Instrumentierung und Stabilität von Neutronendetektoren, ihren Ansprech- bzw. Kopplungsfunktionen sowie den Datengrundlagen und Katalogen zum Projekt Real-Time database for high resolution Neutron Monitor measurements (NMDB), die einer großen Nutzergemeinschaft frei zugänglich sind
    • …
    corecore