189 research outputs found

    Multi-agent and embedded system technologies applied to improve the management of power systems

    Get PDF
    This article explores a number of improvements made on Supervisory Control and Data Acquisition (SCADA) systems which allow them to be successfully used for automated surveillance. Even telecontrol operators who have limited experience with computers were able to employ the system without any difficulties. Other advances made by taking advantage of the strongest features of embedded and multi-agent system technologies are also featured in this article. These developments have been tested in a true industrial environment. Positive results and feedback have been provided by the tests

    Multiple intelligences in a MultiAgent System applied to telecontrol

    Get PDF
    This paper presents a control system, based on artificial intelligence technologies, that implements multiple intelligences. This system aims to support and improve automatic telecontrol of solar power plants, by either automatically triggering actuators or dynamically giving recommendations to human operators. For this purpose, the development of a MultiAgent System is combined with a variety of inference systems, such as Expert Systems, Neural Networks, and Bayesian Networks. This diversity of intelligent technologies is shown to result in an efficient way to mimic the reasoning process in human operators.Junta de Andalucía P08-TIC-0386

    Analysis of new control applications

    Get PDF
    This document reports the results of the activities performed during the first year of the CRUTIAL project, within the Work Package 1 "Identification and description of Control System Scenarios". It represents the outcome of the analysis of new control applications in the Power System and the identification of critical control system scenarios to be explored by the CRUTIAL project

    PeMMAS: A Tool for Studying the Performance of Multiagent Systems Developed in JADE

    Get PDF
    This paper describes the performance measurement for multiagent systems (PeMMAS) tool, a system designed to study and measure the performance of any multiagent system (MAS) de-veloped in JADE. The tool itself is another MAS which is deployed and coexists alongside the one being studied. This characteristic allows us to adapt PeMMAS to any scenario in which MAS de-ployment in JADE is used. PeMMAS extracts information from the target MAS regarding the use of system resources, the flight time for comprehensive messages according to agent type, as well as the processing time for actions. After processing this information, PeMMAS sends a report to the final user for subsequent analysis

    Towards an Architecture for Semiautonomous Robot Telecontrol Systems.

    Get PDF
    The design and development of a computational system to support robot–operator collaboration is a challenging task, not only because of the overall system complexity, but furthermore because of the involvement of different technical and scientific disciplines, namely, Software Engineering, Psychology and Artificial Intelligence, among others. In our opinion the approach generally used to face this type of project is based on system architectures inherited from the development of autonomous robots and therefore fails to incorporate explicitly the role of the operator, i.e. these architectures lack a view that help the operator to see him/herself as an integral part of the system. The goal of this paper is to provide a human-centered paradigm that makes it possible to create this kind of view of the system architecture. This architectural description includes the definition of the role of operator and autonomous behaviour of the robot, it identifies the shared knowledge, and it helps the operator to see the robot as an intentional being as himself/herself

    Review of the State-of-the-Art on Adaptive Protection for Microgrids based on Communications

    Full text link
    The dominance of distributed energy resources in microgrids and the associated weather dependency require flexible protection. They include devices capable of adapting their protective settings as a reaction to (potential) changes in system state. Communication technologies have a key role in this system since the reactions of the adaptive devices shall be coordinated. This coordination imposes strict requirements: communications must be available and ultra-reliable with bounded latency in the order of milliseconds. This paper reviews the state-of-the-art in the field and provides a thorough analysis of the main related communication technologies and optimization techniques. We also present our perspective on the future of communication deployments in microgrids, indicating the viability of 5G wireless systems and multi-connectivity to enable adaptive protection.Comment: Accepted to IEEE Trans. on Industrial Informatic

    A survey of smart grid architectures, applications, benefits and standardization

    Get PDF
    The successful transformation of conventional power grids into Smart Grids (SG) will require robust and scalable communication network infrastructure. The SGs will facilitate bidirectional electricity flow, advanced load management, a self-healing protection mechanism and advanced monitoring capabilities to make the power system more energy efficient and reliable. In this paper SG communication network architectures, standardization efforts and details of potential SG applications are identified. The future deployment of real-time or near-real-time SG applications is dependent on the introduction of a SG compatible communication system that includes a communication protocol for cross-domain traffic flows within the SG. This paper identifies the challenges within the cross-functional domains of the power and communication systems that current research aims to overcome. The status of SG related machine to machine communication system design is described and recommendations are provided for diverse new and innovative traffic features

    Automatic fault location in electrical distribution networks with distributed generation

    Get PDF
    Nowadays the electrical network is continuously evolving due to the increasing deployment of Information Technologies and the Distribution Energy Resources. This scenario affects directly to the quality of service in the electrical distribution networks. For this reason, the Power Quality is a key important concern to make the electrical network evolve towards a Smart Grid. Power quality is defined through three important focal points: availability, wave quality and commercial quality. The presence of the Distribution Energy Resources in the current electrical distribution network is showing a new scenario where the fault detection is more complex due to the flow current is in both directions. This thesis is focused in the analysis of several methods to locate a fault in electrical distribution network and also how the current communication standards can improve considerably this fault location. It is important to remark that the main contribution of this thesis is in the analysis of several propositions and algorithms to enhance the fault location in a distribution network using the current Intelligent Electronic Device with international standards such as IEC 61850. All of these algorithms have been focused to work in a mesh distribution networks. Another important contribution of this thesis is in the adaptive protection system in order to isolate correctly the fault in a ring system distribution. Although this proposition could be extended to a mesh network where the elements of the network can operate under a fault. Finally, the thesis concludes that the use of communication standards and Internet of Things with current developed Intelligent Electronic Devices technology can contribute significantly to enhance the current and future electrical network distribution.La xarxa elèctrica evoluciona contínuament a causa del creixent desplegament de les Tecnologies de la Informació i dels Recursos Energètics Distribuïts. Aquest escenari afecta directament a la qualitat de servei de les xarxes de distribució elèctrica. Per aquest motiu, el mantenir i millorar el nivell de qualitat d'energia és un punt clau per fer evolucionar la xarxa elèctrica cap a una xarxa Smart Grid. Aquesta qualitat de l'energia es defineix per medi de de tres punts importants: disponibilitat, qualitat d'ona i qualitat comercial. La presència dels Recursos Energètics Distribuïts mostra un nou escenari en què la detecció de defectes es complica afectant a la disponibilitat del servei. Aquesta tesi es centra principalment en l'anàlisi de diversos mètodes per localitzar un defecte a la xarxa de distribució elèctrica i també en com l'ús dels estàndards de comunicació actuals poden contribuir considerablement a la localització del defecte. És important remarcar que la principal contribució d'aquest document ha estat en l'anàlisi de diverses proposicions i algoritmes per millorar la localització de faltes en una xarxa de distribució utilitzant Dispositius Electrònics Intel·ligents amb estàndards internacionals com l'IEC 61850. Tots aquests algoritmes han estat definits per treballar en xarxes de distribució mallades. Una altra contribució important d'aquesta tesi es troba en el sistema de protecció adaptatiu per tal d'aïllar correctament el defecte en una distribució del sistema d'anell amb interruptors automàtics. Aquesta proposta es podria ampliar a una xarxa mallada. Finalment, la tesi conclou amb que l'ús d'estàndards de comunicació i l'Internet of Things en combinació amb Dispositius Electrònics Intel·ligents, desenvolupats actualment, poden contribuir significativament a millorar la distribució de la xarxa elèctrica actual i futura.Postprint (published version
    corecore