299,424 research outputs found

    Constraint-wish and satisfied-dissatisfied: an overview of two approaches for dealing with bipolar querying

    Get PDF
    In recent years, there has been an increasing interest in dealing with user preferences in flexible database querying, expressing both positive and negative information in a heterogeneous way. This is what is usually referred to as bipolar database querying. Different frameworks have been introduced to deal with such bipolarity. In this chapter, an overview of two approaches is given. The first approach is based on mandatory and desired requirements. Hereby the complement of a mandatory requirement can be considered as a specification of what is not desired at all. So, mandatory requirements indirectly contribute to negative information (expressing what the user does not want to retrieve), whereas desired requirements can be seen as positive information (expressing what the user prefers to retrieve). The second approach is directly based on positive requirements (expressing what the user wants to retrieve), and negative requirements (expressing what the user does not want to retrieve). Both approaches use pairs of satisfaction degrees as the underlying framework but have different semantics, and thus also different operators for criteria evaluation, ranking, aggregation, etc

    Resource dedication problem in a multi-project environment

    Get PDF
    There can be different approaches to the management of resources within the context of multi-project scheduling problems. In general, approaches to multiproject scheduling problems consider the resources as a pool shared by all projects. On the other hand, when projects are distributed geographically or sharing resources between projects is not preferred, then this resource sharing policy may not be feasible. In such cases, the resources must be dedicated to individual projects throughout the project durations. This multi-project problem environment is defined here as the resource dedication problem (RDP). RDP is defined as the optimal dedication of resource capacities to different projects within the overall limits of the resources and with the objective of minimizing a predetermined objective function. The projects involved are multi-mode resource constrained project scheduling problems with finish to start zero time lag and non-preemptive activities and limited renewable and nonrenewable resources. Here, the characterization of RDP, its mathematical formulation and two different solution methodologies are presented. The first solution approach is a genetic algorithm employing a new improvement move called combinatorial auction for RDP, which is based on preferences of projects for resources. Two different methods for calculating the projects’ preferences based on linear and Lagrangian relaxation are proposed. The second solution approach is a Lagrangian relaxation based heuristic employing subgradient optimization. Numerical studies demonstrate that the proposed approaches are powerful methods for solving this problem

    Improving package recommendations through query relaxation

    Full text link
    Recommendation systems aim to identify items that are likely to be of interest to users. In many cases, users are interested in package recommendations as collections of items. For example, a dietitian may wish to derive a dietary plan as a collection of recipes that is nutritionally balanced, and a travel agent may want to produce a vacation package as a coordinated collection of travel and hotel reservations. Recent work has explored extending recommendation systems to support packages of items. These systems need to solve complex combinatorial problems, enforcing various properties and constraints defined on sets of items. Introducing constraints on packages makes recommendation queries harder to evaluate, but also harder to express: Queries that are under-specified produce too many answers, whereas queries that are over-specified frequently miss interesting solutions. In this paper, we study query relaxation techniques that target package recommendation systems. Our work offers three key insights: First, even when the original query result is not empty, relaxing constraints can produce preferable solutions. Second, a solution due to relaxation can only be preferred if it improves some property specified by the query. Third, relaxation should not treat all constraints as equals: some constraints are more important to the users than others. Our contributions are threefold: (a) we define the problem of deriving package recommendations through query relaxation, (b) we design and experimentally evaluate heuristics that relax query constraints to derive interesting packages, and (c) we present a crowd study that evaluates the sensitivity of real users to different kinds of constraints and demonstrates that query relaxation is a powerful tool in diversifying package recommendations
    • …
    corecore