37 research outputs found

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Nonlinear predictive threshold model for real-time abnormal gait detection

    Get PDF
    Falls are critical events for human health due to the associated risk of physical and psychological injuries. Several fall related systems have been developed in order to reduce injuries. Among them, fall-risk prediction systems are one of the most promising approaches, as they strive to predict a fall before its occurrence. A category of fall-risk prediction systems evaluates balance and muscle strength through some clinical functional assessment tests, while other prediction systems investigate the recognition of abnormal gait patterns to predict a fall in real-time. The main contribution of this paper is a nonlinear model of user gait in combination with a threshold-based classification in order to recognize abnormal gait patterns with low complexity and high accuracy. In addition, a dataset with realistic parameters is prepared to simulate abnormal walks and to evaluate fall prediction methods. The accelerometer and gyroscope sensors available in a smartphone have been exploited to create the dataset. The proposed approach has been implemented and compared with the state-of-the-art approaches showing that it is able to predict an abnormal walk with a higher accuracy (93.5%) and a higher efficiency (up to 3.5 faster) than other feasible approaches

    Development and evaluation of a haptic framework supporting telerehabilitation robotics and group interaction

    Get PDF
    Telerehabilitation robotics has grown remarkably in the past few years. It can provide intensive training to people with special needs remotely while facilitating therapists to observe the whole process. Telerehabilitation robotics is a promising solution supporting routine care which can help to transform face-to-face and one-on-one treatment sessions that require not only intensive human resource but are also restricted to some specialised care centres to treatments that are technology-based (less human involvement) and easy to access remotely from anywhere. However, there are some limitations such as network latency, jitter, and delay of the internet that can affect negatively user experience and quality of the treatment session. Moreover, the lack of social interaction since all treatments are performed over the internet can reduce motivation of the patients. As a result, these limitations are making it very difficult to deliver an efficient recovery plan. This thesis developed and evaluated a new framework designed to facilitate telerehabilitation robotics. The framework integrates multiple cutting-edge technologies to generate playful activities that involve group interaction with binaural audio, visual, and haptic feedback with robot interaction in a variety of environments. The research questions asked were: 1) Can activity mediated by technology motivate and influence the behaviour of users, so that they engage in the activity and sustain a good level of motivation? 2) Will working as a group enhance users’ motivation and interaction? 3) Can we transfer real life activity involving group interaction to virtual domain and deliver it reliably via the internet? There were three goals in this work: first was to compare people’s behaviours and motivations while doing the task in a group and on their own; second was to determine whether group interaction in virtual and reala environments was different from each other in terms of performance, engagement and strategy to complete the task; finally was to test out the effectiveness of the framework based on the benchmarks generated from socially assistive robotics literature. Three studies have been conducted to achieve the first goal, two with healthy participants and one with seven autistic children. The first study observed how people react in a challenging group task while the other two studies compared group and individual interactions. The results obtained from these studies showed that the group interactions were more enjoyable than individual interactions and most likely had more positive effects in terms of user behaviours. This suggests that the group interaction approach has the potential to motivate individuals to make more movements and be more active and could be applied in the future for more serious therapy. Another study has been conducted to measure group interaction’s performance in virtual and real environments and pointed out which aspect influences users’ strategy for dealing with the task. The results from this study helped to form a better understanding to predict a user’s behaviour in a collaborative task. A simulation has been run to compare the results generated from the predictor and the real data. It has shown that, with an appropriate training method, the predictor can perform very well. This thesis has demonstrated the feasibility of group interaction via the internet using robotic technology which could be beneficial for people who require social interaction (e.g. stroke patients and autistic children) in their treatments without regular visits to the clinical centres

    Data-driven method for enhanced corrosion assessment of reinforced concrete structures

    Get PDF
    Corrosion is a major problem affecting the durability of reinforced concrete structures. Corrosion related maintenance and repair of reinforced concrete structures cost multibillion USD per annum globally. It is often triggered by the ingression of carbon dioxide and/or chloride into the pores of concrete. Estimation of these corrosion causing factors using the conventional models results in suboptimal assessment since they are incapable of capturing the complex interaction of parameters. Hygrothermal interaction also plays a role in aggravating the corrosion of reinforcement bar and this is usually counteracted by applying surface protection systems. These systems have different degree of protection and they may even cause deterioration to the structure unintentionally. The overall objective of this dissertation is to provide a framework that enhances the assessment reliability of the corrosion controlling factors. The framework is realized through the development of data-driven carbonation depth, chloride profile and hygrothermal performance prediction models. The carbonation depth prediction model integrates neural network, decision tree, boosted and bagged ensemble decision trees. The ensemble tree based chloride profile prediction models evaluate the significance of chloride ingress controlling variables from various perspectives. The hygrothermal interaction prediction models are developed using neural networks to evaluate the status of corrosion and other unexpected deteriorations in surface-treated concrete elements. Long-term data for all models were obtained from three different field experiments. The performance comparison of the developed carbonation depth prediction model with the conventional one confirmed the prediction superiority of the data-driven model. The variable importance measure revealed that plasticizers and air contents are among the top six carbonation governing parameters out of 25. The discovered topmost chloride penetration controlling parameters representing the composition of the concrete are aggregate size distribution, amount and type of plasticizers and supplementary cementitious materials. The performance analysis of the developed hygrothermal model revealed its prediction capability with low error. The integrated exploratory data analysis technique with the hygrothermal model had identified the surfaceprotection systems that are able to protect from corrosion, chemical and frost attacks. All the developed corrosion assessment models are valid, reliable, robust and easily reproducible, which assist to define proactive maintenance plan. In addition, the determined influential parameters could help companies to produce optimized concrete mix that is able to resist carbonation and chloride penetration. Hence, the outcomes of this dissertation enable reduction of lifecycle costs

    A non-linear approach to modelling and control of electrically stimulated skeletal muscle

    Get PDF
    This thesis is concerned with the development and analysis of a non-linear approach to modelling and control of the contraction of electrically stimulated skeletal muscle. For muscle which has lost nervous control, artificial electrical stimulation can be used as a technique aimed at providing muscular contraction and producing a functionally useful movement. This is generally referred to as Functional Electrical Stimulation (FES) and is used in different application areas such as the rehabilitation of paralysed patient and in cardiac assistance where skeletal muscle can be used to support a failing heart. For both these FES applications a model of the muscle is essential to develop algorithms for the controlled stimulation. For the identification of muscle models, real data are available from experiments with rabbit muscle. Data for contraction with constant muscle length were collected from two muscle with very different characteristics. An empirical modelling approach is developed which is suitable for both muscles. The approach is based on a decomposition of the operating space into smaller sub-regions which are then described by local models of simple, possibly linear structure. The local models are blended together by a scheduler, and the resulting non-linear model is called a Local Model Network (LMN). It is shown how a priori knowledge about the system can be used directly when identifying Local Model Networks. Aspects of the structure selection are discussed and algorithms for the identification of the model parameters are presented. Tools of the analysis of Local Model Networks have been developed and are used to validate the models. The problem of designing a controller based on the LMN structure is discussed. The structure of Local Controller Networks is introduced. These can be derived directly from Local Model Networks. Design techniques for input-output and for state feedback controllers, based on pole placement, are presented. Aspects of the generation of optimal stimulation patterns (which are defined as stimulation patterns which deliver the smallest number of pulses to obtain a desired contraction) are discussed, and various techniques to generate them are presented. In particular, it is shown how a control structure can be used to generate optimal stimulation patterns. A Local Controller Network is used as the controller with a design based on a non-linear LMN model of muscle. Experimental data from a non-linear heat transfer process have been collected and are used to demonstrate the basic modelling and control principles throughout the first part of the thesis

    Development of a real-time classifier for the identification of the Sit-To-Stand motion pattern

    Get PDF
    The Sit-to-Stand (STS) movement has significant importance in clinical practice, since it is an indicator of lower limb functionality. As an optimal trade-off between costs and accuracy, accelerometers have recently been used to synchronously recognise the STS transition in various Human Activity Recognition-based tasks. However, beyond the mere identification of the entire action, a major challenge remains the recognition of clinically relevant phases inside the STS motion pattern, due to the intrinsic variability of the movement. This work presents the development process of a deep-learning model aimed at recognising specific clinical valid phases in the STS, relying on a pool of 39 young and healthy participants performing the task under self-paced (SP) and controlled speed (CT). The movements were registered using a total of 6 inertial sensors, and the accelerometric data was labelised into four sequential STS phases according to the Ground Reaction Force profiles acquired through a force plate. The optimised architecture combined convolutional and recurrent neural networks into a hybrid approach and was able to correctly identify the four STS phases, both under SP and CT movements, relying on the single sensor placed on the chest. The overall accuracy estimate (median [95% confidence intervals]) for the hybrid architecture was 96.09 [95.37 - 96.56] in SP trials and 95.74 [95.39 \u2013 96.21] in CT trials. Moreover, the prediction delays ( 4533 ms) were compatible with the temporal characteristics of the dataset, sampled at 10 Hz (100 ms). These results support the implementation of the proposed model in the development of digital rehabilitation solutions able to synchronously recognise the STS movement pattern, with the aim of effectively evaluate and correct its execution

    Hydro-Ecological Modeling

    Get PDF
    Water is not only an interesting object to be studied on its own, it also is an important component driving almost all ecological processes occurring in our landscapes. Plant growth depends on soil water content, as well is nutrient turnover by microbes. Water shapes the environment by erosion and sedimentation. Species occur or are lost depending on hydrological conditions, and many infectious diseases are water-borne. Modeling the complex interactions of water and ecosystem processes requires the prediction of hydrological fluxes and stages on the one side and the coupling of the ecosystem process model on the other. While much effort has been given to the development of the hydrological model theory in recent decades, we have just begun to explore the difficulties that occur when coupled model applications are being set up
    corecore