165,997 research outputs found

    Imaging time series for the classification of EMI discharge sources

    Get PDF
    In this work, we aim to classify a wider range of Electromagnetic Interference (EMI) discharge sources collected from new power plant sites across multiple assets. This engenders a more complex and challenging classification task. The study involves an investigation and development of new and improved feature extraction and data dimension reduction algorithms based on image processing techniques. The approach is to exploit the Gramian Angular Field technique to map the measured EMI time signals to an image, from which the significant information is extracted while removing redundancy. The image of each discharge type contains a unique fingerprint. Two feature reduction methods called the Local Binary Pattern (LBP) and the Local Phase Quantisation (LPQ) are then used within the mapped images. This provides feature vectors that can be implemented into a Random Forest (RF) classifier. The performance of a previous and the two new proposed methods, on the new database set, is compared in terms of classification accuracy, precision, recall, and F-measure. Results show that the new methods have a higher performance than the previous one, where LBP features achieve the best outcome

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    Deep residual neural network for EMI event classification using bispectrum representation

    Get PDF
    This paper presents a novel method for condition monitoring of High Voltage (HV) power plant equipment through analysis of discharge signals. These discharge signals are measured using the Electromagnetic Interference (EMI) method and processed using third order Higher-Order Statistics (HOS) to obtain a Bispectrum representation. By mapping the time-domain signal to a Bispectrum image representations the problem can be approached as an image classification task. This allows for the novel application of a Deep Residual Neural Network (ResNet) to the classification of HV discharge signals. The network is trained on signals into 9 classes and achieves high classification accuracy in each category, improving upon our previous work on this task

    Woodworking facilities: Driving efficiency through Automation applied to major process steps

    Get PDF
    The investment scenario applied to forestry development analyzes the fundamental changes in the production structure, among other things. These changes refer to the priority development of the pulp and paper industry through the chain of large-scale woodworking facilities, where pulp, paper and cardboard manufacturing plants are the key links. Such facilities include sawmilling facilities, wood-processing factories, and timber factories. Those provide a significant economic benefit, so improving them is one of the top priorities. Considering this priority is the purpose of this article. The goal was achieved using common and scientific research methods, including mathematical modeling. Theoretical research resulted in three sets of formulas adapted for evaluating the pulpwood barking from theoretical findings on image recognition. © 2018 Authors

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Convolutional neural network for breathing phase detection in lung sounds

    Get PDF
    We applied deep learning to create an algorithm for breathing phase detection in lung sound recordings, and we compared the breathing phases detected by the algorithm and manually annotated by two experienced lung sound researchers. Our algorithm uses a convolutional neural network with spectrograms as the features, removing the need to specify features explicitly. We trained and evaluated the algorithm using three subsets that are larger than previously seen in the literature. We evaluated the performance of the method using two methods. First, discrete count of agreed breathing phases (using 50% overlap between a pair of boxes), shows a mean agreement with lung sound experts of 97% for inspiration and 87% for expiration. Second, the fraction of time of agreement (in seconds) gives higher pseudo-kappa values for inspiration (0.73-0.88) than expiration (0.63-0.84), showing an average sensitivity of 97% and an average specificity of 84%. With both evaluation methods, the agreement between the annotators and the algorithm shows human level performance for the algorithm. The developed algorithm is valid for detecting breathing phases in lung sound recordings
    corecore