1,239 research outputs found

    Vehicle level health assessment through integrated operational scalable prognostic reasoners

    Get PDF
    Today’s aircraft are very complex in design and need constant monitoring of the systems to establish the overall health status. Integrated Vehicle Health Management (IVHM) is a major component in a new future asset management paradigm where a conscious effort is made to shift asset maintenance from a scheduled based approach to a more proactive and predictive approach. Its goal is to maximize asset operational availability while minimising downtime and the logistics footprint through monitoring deterioration of component conditions. IVHM involves data processing which comprehensively consists of capturing data related to assets, monitoring parameters, assessing current or future health conditions through prognostics and diagnostics engine and providing recommended maintenance actions. The data driven prognostics methods usually use a large amount of data to learn the degradation pattern (nominal model) and predict the future health. Usually the data which is run-to-failure used are accelerated data produced in lab environments, which is hardly the case in real life. Therefore, the nominal model is far from the present condition of the vehicle, hence the predictions will not be very accurate. The prediction model will try to follow the nominal models which mean more errors in the prediction, this is a major drawback of the data driven techniques. This research primarily presents the two novel techniques of adaptive data driven prognostics to capture the vehicle operational scalability degradation. Secondary the degradation information has been used as a Health index and in the Vehicle Level Reasoning System (VLRS). Novel VLRS are also presented in this research study. The research described here proposes a condition adaptive prognostics reasoning along with VLRS

    Assessing hyper parameter optimization and speedup for convolutional neural networks

    Get PDF
    The increased processing power of graphical processing units (GPUs) and the availability of large image datasets has fostered a renewed interest in extracting semantic information from images. Promising results for complex image categorization problems have been achieved using deep learning, with neural networks comprised of many layers. Convolutional neural networks (CNN) are one such architecture which provides more opportunities for image classification. Advances in CNN enable the development of training models using large labelled image datasets, but the hyper parameters need to be specified, which is challenging and complex due to the large number of parameters. A substantial amount of computational power and processing time is required to determine the optimal hyper parameters to define a model yielding good results. This article provides a survey of the hyper parameter search and optimization methods for CNN architectures

    Enhanced Bees Algorithm with fuzzy logic and Kalman filtering

    Get PDF
    The Bees Algorithm is a new population-based optimisation procedure which employs a combination of global exploratory and local exploitatory search. This thesis introduces an enhanced version of the Bees Algorithm which implements a fuzzy logic system for greedy selection of local search sites. The proposed fuzzy greedy selection system reduces the number of parameters needed to run the Bees Algorithm. The proposed algorithm has been applied to a number of benchmark function optimisation problems to demonstrate its robustness and self-organising ability. The Bees Algorithm in both its basic and enhanced forms has been used to optimise the parameters of a fuzzy logic controller. The purpose of the controller is to stabilise and balance an under-actuated two-link acrobatic robot (ACROBOT) in the upright position. Kalman filtering, as a fast convergence gradient-based optimisation method, is introduced as an alternative to random neighbourhood search to guide worker bees speedily towards the optima of local search sites. The proposed method has been used to tune membership functions for a fuzzy logic system. Finally, the fuzzy greedy selection system is enhanced by using multiple independent criteria to select local search sites. The enhanced fuzzy selection system has again been used with Kalman filtering to speed up the Bees Algorithm. The resulting algorithm has been applied to train a Radial Basis Function (RBF) neural network for wood defect identification. The results obtained show that the changes made to the Bees Algorithm in this research have significantly improved its performance. This is because these enhancements maintain the robust global search attribute of the Bees Algorithm and improve its local search procedure.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A new algorithm for simultaneous retrieval of aerosols and marine parameters

    Get PDF
    We present an algorithm for simultaneous retrieval of aerosol and marine parameters in coastal waters. The algorithm is based on a radiative transfer forward model for a coupled atmosphere-ocean system, which is used to train a radial basis function neural network (RBF-NN) to obtain a fast and accurate method to compute radiances at the top of the atmosphere (TOA) for given aerosol and marine input parameters. The inverse modelling algorithm employs multidimensional unconstrained non-linear optimization to retrieve three marine parameters (concentrations of chlorophyll and mineral particles, as well as absorption by coloured dissolved organic matter (CDOM)), and two aerosol parameters (aerosol fine-mode fraction and aerosol volume fraction). We validated the retrieval algorithm using synthetic data and found it, for both low and high sun, to predict each of the five parameters accurately, both with and without white noise added to the top of the atmosphere (TOA) radiances. When varying the solar zenith angle (SZA) and retraining the RBF-NN without noise added to the TOA radiance, we found the algorithm to predict the CDOM absorption, chlorophyll concentration, mineral concentration, aerosol fine-mode fraction, and aerosol volume fraction with correlation coefficients greater than 0.72, 0.73, 0.93, 0.67, and 0.87, respectively, for 45∘≤∘≤ SZA ≤ 75∘∘. By adding white Gaussian noise to the TOA radiances with varying values of the signal-to-noise-ratio (SNR), we found the retrieval algorithm to predict CDOM absorption, chlorophyll concentration, mineral concentration, aerosol fine-mode fraction, and aerosol volume fraction well with correlation coefficients greater than 0.77, 0.75, 0.91, 0.81, and 0.86, respectively, for high sun and SNR ≥ 95.publishedVersio

    Interpretability-oriented data-driven modelling of bladder cancer via computational intelligence

    Get PDF
    • …
    corecore