49,091 research outputs found

    Implementation of decision trees for embedded systems

    Get PDF
    This research work develops real-time incremental learning decision tree solutions suitable for real-time embedded systems by virtue of having both a defined memory requirement and an upper bound on the computation time per training vector. In addition, the work provides embedded systems with the capabilities of rapid processing and training of streamed data problems, and adopts electronic hardware solutions to improve the performance of the developed algorithm. Two novel decision tree approaches, namely the Multi-Dimensional Frequency Table (MDFT) and the Hashed Frequency Table Decision Tree (HFTDT) represent the core of this research work. Both methods successfully incorporate a frequency table technique to produce a complete decision tree. The MDFT and HFTDT learning methods were designed with the ability to generate application specific code for both training and classification purposes according to the requirements of the targeted application. The MDFT allows the memory architecture to be specified statically before learning takes place within a deterministic execution time. The HFTDT method is a development of the MDFT where a reduction in the memory requirements is achieved within a deterministic execution time. The HFTDT achieved low memory usage when compared to existing decision tree methods and hardware acceleration improved the performance by up to 10 times in terms of the execution time

    Robust optimization with incremental recourse

    Full text link
    In this paper, we consider an adaptive approach to address optimization problems with uncertain cost parameters. Here, the decision maker selects an initial decision, observes the realization of the uncertain cost parameters, and then is permitted to modify the initial decision. We treat the uncertainty using the framework of robust optimization in which uncertain parameters lie within a given set. The decision maker optimizes so as to develop the best cost guarantee in terms of the worst-case analysis. The recourse decision is ``incremental"; that is, the decision maker is permitted to change the initial solution by a small fixed amount. We refer to the resulting problem as the robust incremental problem. We study robust incremental variants of several optimization problems. We show that the robust incremental counterpart of a linear program is itself a linear program if the uncertainty set is polyhedral. Hence, it is solvable in polynomial time. We establish the NP-hardness for robust incremental linear programming for the case of a discrete uncertainty set. We show that the robust incremental shortest path problem is NP-complete when costs are chosen from a polyhedral uncertainty set, even in the case that only one new arc may be added to the initial path. We also address the complexity of several special cases of the robust incremental shortest path problem and the robust incremental minimum spanning tree problem

    Incremental Predictive Process Monitoring: How to Deal with the Variability of Real Environments

    Full text link
    A characteristic of existing predictive process monitoring techniques is to first construct a predictive model based on past process executions, and then use it to predict the future of new ongoing cases, without the possibility of updating it with new cases when they complete their execution. This can make predictive process monitoring too rigid to deal with the variability of processes working in real environments that continuously evolve and/or exhibit new variant behaviors over time. As a solution to this problem, we propose the use of algorithms that allow the incremental construction of the predictive model. These incremental learning algorithms update the model whenever new cases become available so that the predictive model evolves over time to fit the current circumstances. The algorithms have been implemented using different case encoding strategies and evaluated on a number of real and synthetic datasets. The results provide a first evidence of the potential of incremental learning strategies for predicting process monitoring in real environments, and of the impact of different case encoding strategies in this setting

    Algorithm selection on data streams

    Get PDF
    We explore the possibilities of meta-learning on data streams, in particular algorithm selection. In a first experiment we calculate the characteristics of a small sample of a data stream, and try to predict which classifier performs best on the entire stream. This yields promising results and interesting patterns. In a second experiment, we build a meta-classifier that predicts, based on measurable data characteristics in a window of the data stream, the best classifier for the next window. The results show that this meta-algorithm is very competitive with state of the art ensembles, such as OzaBag, OzaBoost and Leveraged Bagging. The results of all experiments are made publicly available in an online experiment database, for the purpose of verifiability, reproducibility and generalizability
    corecore