6,333 research outputs found

    A maximum power point tracking for a photovoltaic system based on optimum sinusoidal modulated control pulses

    Get PDF
    Photovoltaic systems have grown rapidly in the last few decades. This growth has enhanced research about this technology, focusing on reducing cost and improving efficiency. Maximum power point tracking (MPPT), which increases the overall efficiency of a PV system, is a main part of a PV system. In this paper, some MPPT methods have been critically reviewed. Fractional open-circuit voltage has been investigated. The approach of a separate PV array to obtain the open circuit voltage (Voc) is adopted. The proposed idea in this paper is based on optimising the control pulses for the DC-DC converter. The generation of control pulses is based on sinusoidal modulated pulse width modulation (SPWM). The output from the DC-DC converter is then fed into a low frequency square wave voltage-fed inverter circuit. The output is a fine sinusoidal waveform, although the inverter operates at a low frequency. The block diagrams and the results are presented

    Generalized formulation of multilevel selective harmonic elimination PWM: Case I-Non-Equal DC Sources

    Get PDF
    The paper presents optimal solutions for eliminating harmonics from the output waveform of a multilevel staircase pulse-width modulation (PWM) method with non-equal dc sources. Therefore, the degrees of freedom for specifying the cost function increased without physical changes as compared to the conventional stepped waveform. The paper discusses an efficient hybrid real coded genetic algorithm (HRCGA) that reduces significantly the computational burden resulting in fast convergence. An objective function describing a measure of effectiveness of eliminating selected order of harmonics while controlling the fundamental for any number of levels and for any number of switching angels is derived. It is confirmed that multiple independent sets of solutions exist and the ones that offer better harmonic performance are identified. Different operating points including five- and seven-level inverters are investigated and simulated. Selected experimental results are reported to verify and validate the effectiveness of the proposed method

    Design and Analysis of Three-Phase Three-Level PWM Inverter

    Get PDF
    Design of three-phase three level PWM inverter and analysis of the output current harmonics are presented in this paper. The three-level inverter is designed to supply three-phase load and it is controlled by FPGA under several modulation techniques (Sinusoidal PWM and Third Harmonic Injection PWM). Selection of semiconductor switches and other component of the inverter are described. Inverter output current harmonics under several modulation techniques will be analysed and compared

    Functional Verification of Power Electronic Systems

    Get PDF
    This project is the final work of the degree in Industrial Electronics and Automatic Engineering. It has global concepts of electronics but it focuses in power electronic systems. There is a need for reliable testing systems to ensure the good functionality of power electronic systems. The constant evolution of this products requires the development of new testing techniques. This project aims to develop a new testing system to accomplish the functional verification of a new power electronic system manufactured on a company that is in the power electronic sector . This test system consists on two test bed platforms, one to test the control part of the systems and the other one to test their functionality. A software to perform the test is also designed. Finally, the testing protocol is presented. This design is validated and then implemented on a buck converter and an inverter that are manufactured at the company. The results show that the test system is reliable and is capable of testing the functional verification of the two power electronic system successfully. In summary, this design can be introduced in the power electronic production process to test the two products ensuring their reliability in the market

    A GaN-based wireless power and information transmission method using Dual-frequency Programmed Harmonic Modulation

    Get PDF
    Information transmission is often required in power transfer to implement control. In this paper, a Dual-Frequency Programmed Harmonic Modulation (DFPHM) method is proposed to transfer two frequencies carrying power and information with the single converter via a common inductive coil. The proposed method reduces the number of injection tightly coupled transformers used to transmit information, thereby simplifying the system structure and improving reliability. The performances of power and information transmission, and the method of information modulation and demodulation, as well as the principles of the control, are analyzed in detail. Then a simulation model is set up to verify the feasibility of the method. In addition, an experiment platform is established to verify that the single converter can transfer the power and information simultaneously via a common inductive coil without using tightly coupled transformers.Web of Science8498564984

    Online control of AC/AC converter based SHEPWM technique

    Get PDF
    Conventional online control of AC/AC converter controlled by the selective harmonic elimination pulse width modulation technique (SHEPWM) is based on storing the offline calculated switching angle values in a form of lookup table. Then the required switching pattern of certain modulation index (M) is searched through the lookup table. This methodology suffers from limited system flexibility. This paper introduces a novel implementation scheme based on real-time calculation of the required SHEPWM switching pattern with linear control of the fundamental voltage component magnitude based on curve fitting technique for the exact switching angle trajectories. The accuracy of the derived polynomials is evaluated by calculating converter performance parameters using the approximated switching angles solutions obtained from the introduced method and the exact switching angles solutions. Detail of the introduced methodology is presented. Simulation and experimental results have been carried out to confirm the validity of the introduced algorithm

    On abolishing symmetry requirements in the formulation of a five-level selective harmonic elimination pulse-width modulation technique

    Get PDF
    Selective harmonic elimination pulse width modulation (SHE-PWM) techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. These optimal switching transitions can be calculated through Fourier theory, and for a number of years quarter-wave and half-wave symmetries have been assumed when formulating the problem. It was shown recently that symmetry requirements can be relaxed as a constraint. This changes the way the problem is formulated, and different solutions can be found without a compromise. This letter reports solutions to the switching transitions of a five-level SHE-PWM when both the quarter- and half-wave symmetry are abolished. Only the region of high-modulation indices is reported since the low-modulation indices region requires a unipolar waveform to be realized. Selected simulation and experimental results are reported to show the effectiveness of the proposed method

    A Practical Model and an Optimal Controller for Variable Speed Wind Turbine Permanent Magnet Synchronous Generator

    Get PDF
    The aim of this paper is the complete modeling and simulation of an optimal control system using practical setup parameters for a wind energy conversion system (WECS) through a direct driven permanent magnet synchronous generator (D-PMSG) feeding ac power to the utility grid. The generator is connected to the grid through a back-to-back PWM converter with a switching frequency of 10 KHz. A maximum power point tracking (MPPT) control is proposed to ensure the maximum power capture from wind turbine, and a PI controller designed for the wind turbine to generate optimum speed for the generator via an aerodynamic model. MATLAB/Simulink results demonstrate the accuracy of the developed control scheme

    Realization of a 10 kW MES power to methane plant based on unified AC/DC converter

    Get PDF
    This paper presents a galvanic isolated multi output AC/DC topology that is suitable for Microbial electrosynthesis (MES) based Power to Methane energy storage systems. The presented scheme utilizes a three phase back to back converters, a single-input and multiple-output three phase transformer, single diode rectifiers and buck converters that employ a proper interconnection between MES cells and the mains. The proposed topology merges all the required single phase AC/DC converters as a unified converter which reduces the overall system size and provides system integrity and overall controllability. The proposed control scheme allows to achieve the following desired goals:1) Simultaneous control of all cells; 2) Absorbing power from the grid and covert to methane when the electricity price goes down; 3) the power factor and the quality of grid current is under control; 4) Supplying MES cells at the optimal operating point. For verification of system performance, Real time simulation results that are obtained from a 10-kW MES energy storage are presented.Postprint (author's final draft

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future
    • 

    corecore