1,233 research outputs found

    Dynamic user preference parameters selection and energy consumption optimization for smart homes using deep extreme learning machine and bat algorithm

    Get PDF
    The advancements in electronic devices have increased the demand for the internet of things (IoT) based smart homes, where the connecting devices are growing at a rapid pace. Connected electronic devices are more common in smart buildings, smart cities, smart grids, and smart homes. The advancements in smart grid technologies have enabled to monitor every moment of energy consumption in smart buildings. The issue with smart devices is more energy consumption as compared to ordinary buildings. Due to smart cities and smart homes’ growth rates, the demand for efficient resource management is also growing day by day. Energy is a vital resource, and its production cost is very high. Due to that, scientists and researchers are working on optimizing energy usage, especially in smart cities, besides providing a comfortable environment. The central focus of this paper is on energy consumption optimization in smart buildings or smart homes. For the comfort index (thermal, visual, and air quality), we have used three parameters, i.e., Temperature (◦F), illumination (lx), and CO2 (ppm). The major problem with the previous methods in the literature is the static user parameters (Temperature, illumination, and CO2); when they (parameters) are assigned at the beginning, they cannot be changed. In this paper, the Alpha Beta filter has been used to predict the indoor Temperature, illumination, and air quality and remove noise from the data. We applied a deep extreme learning machine approach to predict the user parameters. We have used the Bat algorithm and fuzzy logic to optimize energy consumption and comfort index management. The predicted user parameters have improved the system’s overall performance in terms of ease of use of smart systems, energy consumption, and comfort index management. The comfort index after optimization remained near to 1, which proves the significance of the system. After optimization, the power consumption also reduced and stayed around the maximum of 15-18w

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    MINHLP: Module to Identify New Hampshire License Plates

    Get PDF
    A license plate, referred to simply as a plate or vehicle registration plate, is a small plastic or metal plate attached to a motor vehicle for official identification purposes. Most governments require a registration plate to be attached to both the front and rear of a vehicle, although certain jurisdictions or vehicle types, such as motorcycles, require only one plate, which is usually attached to the rear of the vehicle. We present analysis of Automatic License Plate Recognition (ALPR) of New Hampshire (NH) plates using open source products. This thesis contains an implementation of a demonstrated model and analysis of the results. In this paper, OpenCV (computer vision library) and Tesseract (open source optical character reader) is presented as a core intelligent infrastructure. The thesis explains the mathematical principles and algorithms used for number plate detection, processes of proper characters segmentation, normalization and recognition. A description of the challenges involved in detecting and reading license plate in NH, previous studies done by others and the strategies adopted to solve them is also given

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    Intelligent machining methods for Ti6Al4V: a review

    Get PDF
    Digital manufacturing is a necessity to establishing a roadmap for the future manufacturing systems projected for the fourth industrial revolution. Intelligent features such as behavior prediction, decision- making abilities, and failure detection can be integrated into machining systems with computational methods and intelligent algorithms. This review reports on techniques for Ti6Al4V machining process modeling, among them numerical modeling with finite element method (FEM) and artificial intelligence- based models using artificial neural networks (ANN) and fuzzy logic (FL). These methods are intrinsically intelligent due to their ability to predict machining response variables. In the context of this review, digital image processing (DIP) emerges as a technique to analyze and quantify the machining response (digitization) in the real machining process, often used to validate and (or) introduce data in the modeling techniques enumerated above. The widespread use of these techniques in the future will be crucial for the development of the forthcoming machining systems as they provide data about the machining process, allow its interpretation and quantification in terms of useful information for process modelling and optimization, which will create machining systems less dependent on direct human intervention.publishe

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Challenges and opportunities of introducing Internet of Things and Artificial Intelligence applications into Supply Chain Management

    Get PDF
    The study examines the challenges and opportunities of introducing Artificial Intelligence (AI) and the Internet of Things (IoT) into the Supply Chain Management (SCM). This research focuses on the Logistic Management. The central research question is “What are the key challenges and opportunities of introducing AI and IoT applications into the Supply Chain Management?” The goal of this research is to collect the most appropriate literature to help create a conceptual framework, which involves the integration of the IoT and AI applications into contemporary supply chain management with the emphasis on the logistics management. Additionally, the role of 5G Network is closely studied in order to indicate its capabilities and the processing capacity that it can provide to the AI and IoT operations. In addition, the semi-structured online interview with the top managers from several companies was conducted in order to identify the degree of readiness of the companies for the AI and IoT applications in SCM. From the retrieved results, the major challenges of integrating the IoT into SCM are the security and privacy issues, the sensitivity of the data and high costs of the implementation at an initial stage. Moreover, the research results have shown that the IoT applications can positively affect the SCM activities, in particular, the high visibility across the SC, an effective traceability and an automated data collection. Furthermore, the predictive analysis of AI programs can help the SCM to eliminate the potential errors and failures in the processes.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Technology Directions for the 21st Century

    Get PDF
    The Office of Space Communications (OSC) is tasked by NASA to conduct a planning process to meet NASA's science mission and other communications and data processing requirements. A set of technology trend studies was undertaken by Science Applications International Corporation (SAIC) for OSC to identify quantitative data that can be used to predict performance of electronic equipment in the future to assist in the planning process. Only commercially available, off-the-shelf technology was included. For each technology area considered, the current state of the technology is discussed, future applications that could benefit from use of the technology are identified, and likely future developments of the technology are described. The impact of each technology area on NASA operations is presented together with a discussion of the feasibility and risk associated with its development. An approximate timeline is given for the next 15 to 25 years to indicate the anticipated evolution of capabilities within each of the technology areas considered. This volume contains four chapters: one each on technology trends for database systems, computer software, neural and fuzzy systems, and artificial intelligence. The principal study results are summarized at the beginning of each chapter
    • …
    corecore