16,858 research outputs found

    Automatic extraction of knowledge from web documents

    Get PDF
    A large amount of digital information available is written as text documents in the form of web pages, reports, papers, emails, etc. Extracting the knowledge of interest from such documents from multiple sources in a timely fashion is therefore crucial. This paper provides an update on the Artequakt system which uses natural language tools to automatically extract knowledge about artists from multiple documents based on a predefined ontology. The ontology represents the type and form of knowledge to extract. This knowledge is then used to generate tailored biographies. The information extraction process of Artequakt is detailed and evaluated in this paper

    Named Entity Recognition in Twitter using Images and Text

    Full text link
    Named Entity Recognition (NER) is an important subtask of information extraction that seeks to locate and recognise named entities. Despite recent achievements, we still face limitations with correctly detecting and classifying entities, prominently in short and noisy text, such as Twitter. An important negative aspect in most of NER approaches is the high dependency on hand-crafted features and domain-specific knowledge, necessary to achieve state-of-the-art results. Thus, devising models to deal with such linguistically complex contexts is still challenging. In this paper, we propose a novel multi-level architecture that does not rely on any specific linguistic resource or encoded rule. Unlike traditional approaches, we use features extracted from images and text to classify named entities. Experimental tests against state-of-the-art NER for Twitter on the Ritter dataset present competitive results (0.59 F-measure), indicating that this approach may lead towards better NER models.Comment: The 3rd International Workshop on Natural Language Processing for Informal Text (NLPIT 2017), 8 page

    Computational Sociolinguistics: A Survey

    Get PDF
    Language is a social phenomenon and variation is inherent to its social nature. Recently, there has been a surge of interest within the computational linguistics (CL) community in the social dimension of language. In this article we present a survey of the emerging field of "Computational Sociolinguistics" that reflects this increased interest. We aim to provide a comprehensive overview of CL research on sociolinguistic themes, featuring topics such as the relation between language and social identity, language use in social interaction and multilingual communication. Moreover, we demonstrate the potential for synergy between the research communities involved, by showing how the large-scale data-driven methods that are widely used in CL can complement existing sociolinguistic studies, and how sociolinguistics can inform and challenge the methods and assumptions employed in CL studies. We hope to convey the possible benefits of a closer collaboration between the two communities and conclude with a discussion of open challenges.Comment: To appear in Computational Linguistics. Accepted for publication: 18th February, 201

    Semantics-based information extraction for detecting economic events

    Get PDF
    As today's financial markets are sensitive to breaking news on economic events, accurate and timely automatic identification of events in news items is crucial. Unstructured news items originating from many heterogeneous sources have to be mined in order to extract knowledge useful for guiding decision making processes. Hence, we propose the Semantics-Based Pipeline for Economic Event Detection (SPEED), focusing on extracting financial events from news articles and annotating these with meta-data at a speed that enables real-time use. In our implementation, we use some components of an existing framework as well as new components, e.g., a high-performance Ontology Gazetteer, a Word Group Look-Up component, a Word Sense Disambiguator, and components for detecting economic events. Through their interaction with a domain-specific ontology, our novel, semantically enabled components constitute a feedback loop which fosters future reuse of acquired knowledge in the event detection process

    Basic tasks of sentiment analysis

    Full text link
    Subjectivity detection is the task of identifying objective and subjective sentences. Objective sentences are those which do not exhibit any sentiment. So, it is desired for a sentiment analysis engine to find and separate the objective sentences for further analysis, e.g., polarity detection. In subjective sentences, opinions can often be expressed on one or multiple topics. Aspect extraction is a subtask of sentiment analysis that consists in identifying opinion targets in opinionated text, i.e., in detecting the specific aspects of a product or service the opinion holder is either praising or complaining about

    Towards a Reference Architecture with Modular Design for Large-scale Genotyping and Phenotyping Data Analysis: A Case Study with Image Data

    Get PDF
    With the rapid advancement of computing technologies, various scientific research communities have been extensively using cloud-based software tools or applications. Cloud-based applications allow users to access software applications from web browsers while relieving them from the installation of any software applications in their desktop environment. For example, Galaxy, GenAP, and iPlant Colaborative are popular cloud-based systems for scientific workflow analysis in the domain of plant Genotyping and Phenotyping. These systems are being used for conducting research, devising new techniques, and sharing the computer assisted analysis results among collaborators. Researchers need to integrate their new workflows/pipelines, tools or techniques with the base system over time. Moreover, large scale data need to be processed within the time-line for more effective analysis. Recently, Big Data technologies are emerging for facilitating large scale data processing with commodity hardware. Among the above-mentioned systems, GenAp is utilizing the Big Data technologies for specific cases only. The structure of such a cloud-based system is highly variable and complex in nature. Software architects and developers need to consider totally different properties and challenges during the development and maintenance phases compared to the traditional business/service oriented systems. Recent studies report that software engineers and data engineers confront challenges to develop analytic tools for supporting large scale and heterogeneous data analysis. Unfortunately, less focus has been given by the software researchers to devise a well-defined methodology and frameworks for flexible design of a cloud system for the Genotyping and Phenotyping domain. To that end, more effective design methodologies and frameworks are an urgent need for cloud based Genotyping and Phenotyping analysis system development that also supports large scale data processing. In our thesis, we conduct a few studies in order to devise a stable reference architecture and modularity model for the software developers and data engineers in the domain of Genotyping and Phenotyping. In the first study, we analyze the architectural changes of existing candidate systems to find out the stability issues. Then, we extract architectural patterns of the candidate systems and propose a conceptual reference architectural model. Finally, we present a case study on the modularity of computation-intensive tasks as an extension of the data-centric development. We show that the data-centric modularity model is at the core of the flexible development of a Genotyping and Phenotyping analysis system. Our proposed model and case study with thousands of images provide a useful knowledge-base for software researchers, developers, and data engineers for cloud based Genotyping and Phenotyping analysis system development

    Review of Semantic Importance and Role of using Ontologies in Web Information Retrieval Techniques

    Get PDF
    The Web contains an enormous amount of information, which is managed to accumulate, researched, and regularly used by many users. The nature of the Web is multilingual and growing very fast with its diverse nature of data including unstructured or semi-structured data such as Websites, texts, journals, and files. Obtaining critical relevant data from such vast data with its diverse nature has been a monotonous and challenging task. Simple key phrase data gathering systems rely heavily on statistics, resulting in a word incompatibility problem related to a specific word's inescapable semantic and situation variants. As a result, there is an urgent need to arrange such colossal data systematically to find out the relevant information that can be quickly analyzed and fulfill the users' needs in the relevant context. Over the years ontologies are widely used in the semantic Web to contain unorganized information systematic and structured manner. Still, they have also significantly enhanced the efficiency of various information recovery approaches. Ontological information gathering systems recover files focused on the semantic relation of the search request and the searchable information. This paper examines contemporary ontology-based information extraction techniques for texts, interactive media, and multilingual data types. Moreover, the study tried to compare and classify the most significant developments utilized in the search and retrieval techniques and their major disadvantages and benefits

    What Would You Ask to Your Home if It Were Intelligent? Exploring User Expectations about Next-Generation Homes

    Get PDF
    Ambient Intelligence (AmI) research is giving birth to a multitude of futuristic home scenarios and applications; however a clear discrepancy between current installations and research-level designs can be easily noticed. Whether this gap is due to the natural distance between research and engineered applications or to mismatching of needs and solutions remains to be understood. This paper discusses the results of a survey about user expectations with respect to intelligent homes. Starting from a very simple and open question about what users would ask to their intelligent homes, we derived user perceptions about what intelligent homes can do, and we analyzed to what extent current research solutions, as well as commercially available systems, address these emerging needs. Interestingly, most user concerns about smart homes involve comfort and household tasks and most of them can be currently addressed by existing commercial systems, or by suitable combinations of them. A clear trend emerges from the poll findings: the technical gap between user expectations and current solutions is actually narrower and easier to bridge than it may appear, but users perceive this gap as wide and limiting, thus requiring the AmI community to establish a more effective communication with final users, with an increased attention to real-world deploymen
    • 

    corecore