16,557 research outputs found

    A Spatiotemporal Context Definition for Service Adaptation Prediction in a Pervasive Computing Environment

    Full text link
    Pervasive systems refers to context-aware systems that can sense their context, and adapt their behavior accordingly to provide adaptable services. Proactive adaptation of such systems allows changing the service and the context based on prediction. However, the definition of the context is still vague and not suitable to prediction. In this paper we discuss and classify previous definitions of context. Then, we present a new definition which allows pervasive systems to understand and predict their contexts. We analyze the essential lines that fall within the context definition, and propose some scenarios to make it clear our approach.Comment: Context-aware; Pervasive Computing; Context Definition; 2015. International Journal of Advanced Studies in Computer Science and Engineering (IJASCSE) http://www.ijascse.org/publications ;201

    Machine Intelligence Techniques for Next-Generation Context-Aware Wireless Networks

    Full text link
    The next generation wireless networks (i.e. 5G and beyond), which would be extremely dynamic and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), poses many critical challenges for network planning, operation, management and troubleshooting. At the same time, generation and consumption of wireless data are becoming increasingly distributed with ongoing paradigm shift from people-centric to machine-oriented communications, making the operation of future wireless networks even more complex. In mitigating the complexity of future network operation, new approaches of intelligently utilizing distributed computational resources with improved context-awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture aiming to distribute computing, storage, control, communication, and networking functions closer to end users, have a great potential for enabling efficient operation of future wireless networks. These promising architectures make the adoption of artificial intelligence (AI) principles which incorporate learning, reasoning and decision-making mechanism, as natural choices for designing a tightly integrated network. Towards this end, this article provides a comprehensive survey on the utilization of AI integrating machine learning, data analytics and natural language processing (NLP) techniques for enhancing the efficiency of wireless network operation. In particular, we provide comprehensive discussion on the utilization of these techniques for efficient data acquisition, knowledge discovery, network planning, operation and management of the next generation wireless networks. A brief case study utilizing the AI techniques for this network has also been provided.Comment: ITU Special Issue N.1 The impact of Artificial Intelligence (AI) on communication networks and services, (To appear

    Controlling services in a mobile context-aware infrastructure

    Get PDF
    Context-aware application behaviors can be described as logic rules following the Event-Control-Action (ECA) pattern. In this pattern, an Event models an occurrence of interest (e.g., a change in context); Control specifies a condition that must hold prior to the execution of the action; and an Action represents the invocation of arbitrary services. We have defined a Controlling service aiming at facilitating the dynamic configuration of ECA rule specifications by means of a mobile rule engine and a mechanism that distributes context reasoning activities to a network of context processing nodes. In this paper we present a novel context modeling approach that provides application developers and users with more appropriate means to define context information and ECA rules. Our approach makes use of ontologies to model context information and has been developed on top of web services technology

    ADARES: Adaptive Resource Management for Virtual Machines

    Full text link
    Virtual execution environments allow for consolidation of multiple applications onto the same physical server, thereby enabling more efficient use of server resources. However, users often statically configure the resources of virtual machines through guesswork, resulting in either insufficient resource allocations that hinder VM performance, or excessive allocations that waste precious data center resources. In this paper, we first characterize real-world resource allocation and utilization of VMs through the analysis of an extensive dataset, consisting of more than 250k VMs from over 3.6k private enterprise clusters. Our large-scale analysis confirms that VMs are often misconfigured, either overprovisioned or underprovisioned, and that this problem is pervasive across a wide range of private clusters. We then propose ADARES, an adaptive system that dynamically adjusts VM resources using machine learning techniques. In particular, ADARES leverages the contextual bandits framework to effectively manage the adaptations. Our system exploits easily collectible data, at the cluster, node, and VM levels, to make more sensible allocation decisions, and uses transfer learning to safely explore the configurations space and speed up training. Our empirical evaluation shows that ADARES can significantly improve system utilization without sacrificing performance. For instance, when compared to threshold and prediction-based baselines, it achieves more predictable VM-level performance and also reduces the amount of virtual CPUs and memory provisioned by up to 35% and 60% respectively for synthetic workloads on real clusters

    Multiple Workflows Scheduling in Multi-tenant Distributed Systems: A Taxonomy and Future Directions

    Full text link
    The workflow is a general notion representing the automated processes along with the flow of data. The automation ensures the processes being executed in the order. Therefore, this feature attracts users from various background to build the workflow. However, the computational requirements are enormous and investing for a dedicated infrastructure for these workflows is not always feasible. To cater to the broader needs, multi-tenant platforms for executing workflows were began to be built. In this paper, we identify the problems and challenges in the multiple workflows scheduling that adhere to the platforms. We present a detailed taxonomy from the existing solutions on scheduling and resource provisioning aspects followed by the survey of relevant works in this area. We open up the problems and challenges to shove up the research on multiple workflows scheduling in multi-tenant distributed systems.Comment: Several changes has been done based on reviewers' comments after first round review. This is a pre-print for paper (currently under second round review) submitted to ACM Computing Survey

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Mobile Multimedia Recommendation in Smart Communities: A Survey

    Full text link
    Due to the rapid growth of internet broadband access and proliferation of modern mobile devices, various types of multimedia (e.g. text, images, audios and videos) have become ubiquitously available anytime. Mobile device users usually store and use multimedia contents based on their personal interests and preferences. Mobile device challenges such as storage limitation have however introduced the problem of mobile multimedia overload to users. In order to tackle this problem, researchers have developed various techniques that recommend multimedia for mobile users. In this survey paper, we examine the importance of mobile multimedia recommendation systems from the perspective of three smart communities, namely, mobile social learning, mobile event guide and context-aware services. A cautious analysis of existing research reveals that the implementation of proactive, sensor-based and hybrid recommender systems can improve mobile multimedia recommendations. Nevertheless, there are still challenges and open issues such as the incorporation of context and social properties, which need to be tackled in order to generate accurate and trustworthy mobile multimedia recommendations

    Mobile XR over 5G: A way forward with mmWaves and Edge

    Full text link
    This e-letter summarizes our most recent work and contributed approaches to increase the capacity, cut down on the latency and provide higher reliability in several extended reality (XR) scenarios. To that end, several technologies from emerging 5G communications systems are weaved together towards enabling a fully immersive XR experience
    corecore