3,929 research outputs found

    Three-axis attitude determination via Kalman filtering of magnetometer data

    Get PDF
    A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system

    Modern digital flight control system design for VTOL aircraft

    Get PDF
    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses

    Learning Linear Dynamical Systems via Spectral Filtering

    Full text link
    We present an efficient and practical algorithm for the online prediction of discrete-time linear dynamical systems with a symmetric transition matrix. We circumvent the non-convex optimization problem using improper learning: carefully overparameterize the class of LDSs by a polylogarithmic factor, in exchange for convexity of the loss functions. From this arises a polynomial-time algorithm with a near-optimal regret guarantee, with an analogous sample complexity bound for agnostic learning. Our algorithm is based on a novel filtering technique, which may be of independent interest: we convolve the time series with the eigenvectors of a certain Hankel matrix.Comment: Published as a conference paper at NIPS 201

    F-8C adaptive flight control extensions

    Get PDF
    An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    The design of digital-adaptive controllers for VTOL aircraft

    Get PDF
    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting

    4DVAR by ensemble Kalman smoother

    Full text link
    We propose to use the ensemble Kalman smoother (EnKS) as linear least squares solver in the Gauss-Newton method for the large nonlinear least squares in incremental 4DVAR. The ensemble approach is naturally parallel over the ensemble members and no tangent or adjoint operators are needed. Further, adding a regularization term results in replacing the Gauss-Newton method, which may diverge, by^M the Levenberg-Marquardt method, which is known to be convergent. The regularization is implemented efficiently as an additional observation in the EnKS.Comment: 9 page

    Periodic Methods for Controlling a Satellite in Formation

    Get PDF
    Precise position determination and control is necessary to accomplish proposed satellite formation flying missions of ground movement target indication and synthetic aperture radar. This thesis combines the estimation and control techniques of past AFIT theses with various time-varying and time-invariant LQG control methods. Linear time-invariant control is ideal for on-board satellite estimation and control applications, freeing-up the satellite\u27s limited computational capacity. Using a dynamics frame transformation from the nodal frame to an orbital frame, a higher fidelity, time-periodic model produced nearly identical results for either time-varying or time-invariant control for many scenarios. Scenarios included initial perturbations in the radial, in-track, and cross-track directions as well as increased magnitude perturbations; step size increase from 0.2 seconds to 2 seconds; and increased and reduced measurement noise level scenarios versus the standard absolute GPS receiver noise level
    corecore