2,181 research outputs found

    A Review of Smart Materials in Tactile Actuators for Information Delivery

    Full text link
    As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery

    Applications of polarized metallic nanostructures.

    Get PDF
    Gold nanostructures exhibit technologically useful properties when they are polarized in an electric field. In two projects we explore instances where the polarized metal can be used in real world applications. The first project involves gold nanoparticles (GNP) for use in light actuated microelectromechanical systems (MEMS) applications. Although the GNPs were originally designed for volumetric heating in biomedical applications, we treat them as a thin film coating, opening the door for these particles to be used in MEMS applications. This work characterizes the thermal properties of gold nanoparticles on surfaces for spatially-targeted thermal actuation in MEMS systems. The second project deals with metalized nanopore membranes for use in microfluidic applications. For this project several models and experiments were performed on electroosmotic flows driven by charge separation at polarized nanopore surfaces. Until this work, the flow-through geometry remained unexplored for induced charge electroosmotic flow (ICEO)

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described

    Enhancements of MEMS design flow for Automotive and Optoelectronic applications

    Get PDF
    In the latest years we have been witnesses of a very rapidly and amazing grown of MicroElectroMechanical systems (MEMS) which nowadays represent the outstanding state-of-the art in a wide variety of applications from automotive to commercial, biomedical and optical (MicroOptoElectroMechanicalSystems). The increasing success of MEMS is found in their high miniaturization capability, thus allowing an easy integration with electronic circuits, their low manufacturing costs (that comes directly from low unit pricing and indirectly from cutting service and maintaining costs) and low power consumption. With the always growing interest around MEMS devices the necessity arises for MEMS designers to define a MEMS design flow. Indeed it is widely accepted that in any complex engineering design process, a well defined and documented design flow or procedure is vital. The top-level goal of a MEMS/MOEMS design flow is to enable complex engineering design in the shortest time and with the lowest number of fabrication iterations, preferably only one. These two characteristics are the measures of a good flow, because they translate directly to the industry-desirable reductions of the metrics “time to market” and “costs”. Like most engineering flows, the MEMS design flow begins with the product definition that generally involves a feasibility study and the elaboration of the device specifications. Once the MEMS specifications are set, a Finite Element Method (FEM) model is developed in order to study its physical behaviour and to extract the characteristic device parameters. These latter are used to develop a high level MEMS model which is necessary to the design of the sensor read out electronics. Once the MEMS geometry is completely defined and matches the device specifications, the device layout must be generated, and finally the MEMS sensor is fabricated. In order to have a MEMS sensor working according to specifications at first production run is essential that the MEMS design flow is as close as possible to the optimum design flow. The key factors in the MEMS design flow are the development of a sensor model as close as possible to the real device and the layout realization. This research work addresses these two aspects by developing optimized custom tools (a tool for layout check (LVS) and a tool for parasitic capacitances extraction) and new methodologies (a methodology for post layout simulations) which support the designer during the crucial steps of the design process as well as by presenting the models of two cases studies belonging to leading MEMS applications (a micromirror for laser projection system and a control loop for the shock immunity enhancement in gyroscopes for automotive applications)

    Single-Cell Impedance Spectroscopy

    Get PDF
    Impedance spectroscopy (IS) is an important tool for cell detection and characterization in medical and food safety applications. In this thesis, the Cal Poly Biofluidics Lab’s impedance spectroscopy system was re-evaluated and optimized for single-cell impedance spectroscopy. To evaluate the IS system, an impedance spectroscopy bioMEMS chip was fabricated in the Cal Poly Microfabcrication lab, software was developed to run IS experiments, and studies were run to validate the system. To explore IS optimization, Maxwell’s mixture theorem and the Schwartz-Christoffel transform were used to calculate an analytic impedance solution to the co-planar electrode system,a novel volume fraction to account for the non-uniformity of the electric field was developed to increase the accuracy of the analytic solution and to investigate the effect of cell position on the impedance spectrum, a software program was created to allow easy access to the analytic solution, and FEA models were developed to compare to the analytic solution and to investigate the effect of complex device geometry

    Novel miniaturised and highly versatile biomechatronic platforms for the characterisation of melanoma cancer cells

    Get PDF
    There has been an increasing demand to acquire highly sensitive devices that are able to detect and characterize cancer at a single cell level. Despite the moderate progress in this field, the majority of approaches failed to reach cell characterization with optimal sensitivity and specificity. Accordingly, in this study highly sensitive, miniaturized-biomechatronic platforms have been modeled, designed, optimized, microfabricated, and characterized, which can be used to detect and differentiate various stages of melanoma cancer cells. The melanoma cell has been chosen as a legitimate cancer model, where electrophysiological and analytical expression of cell-membrane potential have been derived, and cellular contractile force has been obtained through a correlation with micromechanical deflections of a miniaturized cantilever beam. The main objectives of this study are in fourfold: (1) to quantify cell-membrane potential, (2) correlate cellular biophysics to respective contractile force of a cell in association with various stages of the melanoma disease, (3) examine the morphology of each stage of melanoma, and (4) arrive at a relation that would interrelate stage of the disease, cellular contractile force, and cellular electrophysiology based on conducted in vitro experimental findings. Various well-characterized melanoma cancer cell lines, with varying degrees of genetic complexities have been utilized. In this study, two-miniaturized-versatile-biomechatronic platforms have been developed to extract the electrophysiology of cells, and cellular mechanics (mechanobiology). The former platform consists of a microfluidic module, and stimulating and recording array of electrodes patterned on a glass substrate, forming multi-electrode arrays (MEAs), whereas the latter system consists of a microcantilever-based biosensor with an embedded Wheatstone bridge, and a microfluidic module. Furthermore, in support of this work main objectives, dedicated microelectronics together with customized software have been attained to functionalize, and empower the two-biomechatronic platforms. The bio-mechatronic system performance has been tested throughout a sufficient number of in vitro experiments.Open Acces

    Cell Culture on MEMS Platforms: A Review

    Get PDF
    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bioincompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bioincompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented.Institute of Bioengineering and Nanotechnology (Singapore)Singapore. Biomedical Research CouncilSingapore. Agency for Science, Technology and ResearchSingapore. Agency for Science, Technology and Research (R-185-001-045-305)Singapore. Ministry of EducationSingapore. Ministry of Education (Grant R-185- 000-135-112)Singapore. National Medical Research CouncilSingapore. National Medical Research Council (Grant R-185-000-099-213)Jassen Cilag (Firm)Singapore-MIT Alliance (Computational and Systems Biology Flagship Project)Global Enterprise for Micro-Mechanics and Molecular Medicin

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF
    corecore