136 research outputs found

    Magneto-Rheological Actuators for Human-Safe Robots: Modeling, Control, and Implementation

    Get PDF
    In recent years, research on physical human-robot interaction has received considerable attention. Research on this subject has led to the study of new control and actuation mechanisms for robots in order to achieve intrinsic safety. Naturally, intrinsic safety is only achievable in kinematic structures that exhibit low output impedance. Existing solutions for reducing impedance are commonly obtained at the expense of reduced performance, or significant increase in mechanical complexity. Achieving high performance while guaranteeing safety seems to be a challenging goal that necessitates new actuation technologies in future generations of human-safe robots. In this study, a novel two degrees-of-freedom safe manipulator is presented. The manipulator uses magneto-rheological fluid-based actuators. Magneto-rheological actuators offer low inertia-to-torque and mass-to-torque ratios which support their applications in human-friendly actuation. As a key element in the design of the manipulator, bi-directional actuation is attained by antagonistically coupling MR actuators at the joints. Antagonistically coupled MR actuators at the joints allow using a single motor to drive multiple joints. The motor is located at the base of the manipulator in order to further reduce the overall weight of the robot. Due to the unique characteristic of MR actuators, intrinsically safe actuation is achieved without compromising high quality actuation. Despite these advantages, modeling and control of MR actuators present some challenges. The antagonistic configuration of MR actuators may result in limit cycles in some cases when the actuator operates in the position control loop. To study the possibility of limit cycles, describing function method is employed to obtain the conditions under which limit cycles may occur in the operation of the system. Moreover, a connection between the amplitude and the frequency of the potential limit cycles and the system parameters is established to provide an insight into the design of the actuator as well as the controller. MR actuators require magnetic fields to control their output torques. The application of magnetic field however introduces hysteresis in the behaviors of MR actuators. To this effect, an adaptive model is developed to estimate the hysteretic behavior of the actuator. The effectiveness of the model is evaluated by comparing its results with those obtained using the Preisach model. These results are then extended to an adaptive control scheme in order to compensate for the effect of hysteresis. In both modeling and control, stability of proposed schemes are evaluated using Lyapunov method, and the effectiveness of the proposed methods are validated with experimental results

    磁性流体を用いたバックドライブ可能な油圧アクチュエータの開発

    Get PDF
    早大学位記番号:新7478早稲田大

    Development of Rotary Variable Damping and Stiffness Magnetorheological Dampers and their Applications on Robotic Arms and Seat Suspensions

    Get PDF
    This thesis successfully expanded the idea of variable damping and stiffness (VSVD) from linear magnetorheological dampers (MR) to rotary magnetorheological dampers; and explored the applications of rotary MR dampers on the robotic arms and seat suspension. The idea of variable damping and stiffness has been proved to be able to reduce vibration to a large degree. Variable damping can reduce the vibration amplitude and variable stiffness can shift the natural frequency of the system from excitation and prevent resonance. Linear MR dampers with the capacity of variable damping and stiffness have been studied by researchers. However, Linear MR dampers usually require larger installation space than rotary MR dampers, and need more expensive MR fluids to fill in their chambers. Furthermore, rotary MR dampers are inherently more suitable than linear MR dampers in rotary motions like braking devices or robot joints. Hence, rotary MR dampers capable of simultaneously varying the damping and stiffness are very attractive to solve angular vibration problems. Out of this motivation, a rotary VSVD MR damper was designed, prototyped, with its feature of variable damping and stiffness verified by experimental property tests in this thesis. Its mathematical model was also built with the parameters identified. The experimental tests indicated that it has a 141.6% damping variation and 618.1% stiffness variation. This damper’s successful development paved the way for the applications of rotary MR dampers with the similar capability of variable damping and stiffness

    A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery

    Get PDF
    In robotic single-port surgery, it is desirable for a manipulator to exhibit the property of variable stiffness. Small-port incisions may require both high flexibility of the manipulator for safety purposes, as well as high structural stiffness for operational precision and high payload capability. This paper presents a new hyperredundant tubular manipulator with a variable neutral-line mechanisms and adjustable stiffness. A unique asymmetric arrangement of the tendons and the links realizes both articulation of the manipulator and continuous stiffness modulation. This asymmetric motion of the manipulator is compensated by a novel actuation mechanism without affecting its structural stiffness. The paper describes the basic mechanics of the variable neutral-line manipulator, and its stiffness characteristics. Simulation and experimental results verify the performance of the proposed mechanism.Samsung Advanced Institute of Technolog

    Emerging Trends in Mechatronics

    Get PDF
    Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems

    Approach for calibrated measurement of the frequency response for characterization of compliant interface elements on vibration test benches

    Get PDF
    In vibration tests, the behavior of the structure depends on its mechanical boundary conditions, which are represented in physical tests by connecting elements with mechanical properties. Adjustable impedance elements are machine elements fulfilling the task of an adjustable connection on a vibration test bench and therefore represent a variety of properties. Their mechanical properties must be known over wider ranges than comparable compliant structures tested in the literature. This paper is dedicated to vibration testing of the adjustable impedance elements themselves, taking the influences of fixtures and measuring devices of the test bench into account. Different approaches for measuring the frequency response functions are applied to freely vibrating masses at a hydraulic and an electrodynamic test bench. Mass cancellation and the frequency-dependent measurement systems function have shown their usefulness in characterizing the biodynamic response of hand–arm models before. This measurement method is extended to be transferable to machine elements to obtain reliable results under a wider range of test conditions. The necessity for dynamically calibrated measurement of the frequency response functions is demonstrated for different free vibration masses and for two compliant elements on two different test benches to provide results over a wide range of test conditions
    corecore