2,921 research outputs found

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Automotive Ethernet architecture and security: challenges and technologies

    Get PDF
    Vehicle infrastructure must address the challenges posed by today's advances toward connected and autonomous vehicles. To allow for more flexible architectures, high-bandwidth connections and scalability are needed to connect many sensors and electronic control units (ECUs). At the same time, deterministic and low latency is a critical and significant design requirement to support urgent real-time applications in autonomous vehicles. As a recent solution, the time-sensitive network (TSN) was introduced as Ethernet-based amendments in IEEE 802.1 TSN standards to meet those needs. However, it had hurdle to be overcome before it can be used effectively. This paper discusses the latest studies concerning the automotive Ethernet requirements, including transmission delay studies to improve worst-case end-to-end delay and end-to-end jitter. Also, the paper focuses on the securing Ethernet-based in-vehicle networks (IVNs) by reviewing new encryption and authentication methods and approaches

    A qualitative cybersecurity analysis of time-triggered communication networks in automotive systems

    Get PDF
    © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/).Security is gaining increasing importance in automotive systems, driven by technical innovations. For example, automotive vehicles become more open systems, allowing the communication with other traffic participants and road infrastructure. Also, automotive vehicles are provided with increased autonomy which raises severe safety concerns, and consequently also security concerns – both concerns that interweave in such systems. In this paper we present a qualitative cybersecurity analysis by comparing different time-triggered (TT) communication networks. While TT communication networks have been analysed extensively for dependability, the contribution of this work is to identify security-related benefits that TT communication networks can provide. In particular, their mechanisms for spacial and temporal encapsulation of network traffic are instrumental to improve network security. The security arguments can be used as a design guide for implementing critical communication in flexible network standards like TSN.Peer reviewe

    Performance analysis of Ethernet Powerlink protocol: Application to a new lift system generation

    No full text
    International audienceTo ensure control, present lifts use the Controller Area Network (CAN) bus for transmitting commands between components. Although it is largely adopted in the industrial process, CAN is not able to guarantee a sufficient throughput to transmit multimedia data or to meet the requirements of some safety standards. In this paper, we present a transition case from electrical/electromechanical components to a networked control system. The main element we focus on in the lift system is the safety chain. We propose to build the lift communication system around real-time Ethernet for more efficiency, smartness and safety. Furthermore, the use of the openSAFETY protocol as a safety layer over the real-time Ethernet allows the achievement of the required Safety Integrity Level (SIL). This adopted solution should meet the adopted standard IEC 61508 requirements
    corecore