1,988 research outputs found

    Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths

    Get PDF
    In this paper, the benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths is presented (AC-VRP-SPDVCFP). This problem is a specific multi-attribute variant of the well-known Vehicle Routing Problem, and it has been originally built for modelling and solving a real-world newspaper distribution problem with recycling policies. The whole benchmark is composed by 15 instances comprised by 50–100 nodes. For the design of this dataset, real geographical positions have been used, located in the province of Bizkaia, Spain. A deep description of the benchmark is provided in this paper, aiming at extending the details and experimentation given in the paper A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy (Osaba et al.) [1]. The dataset is publicly available for its use and modification.Eneko Osaba would like to thank the Basque Government for its funding support through the EMAITEK and ELKARTEK

    Interaction between intelligent agent strategies for real-time transportation planning

    Get PDF
    In this paper we study the real-time scheduling of time-sensitive full truckload pickup-and-delivery jobs. The problem involves the allocation of jobs to a fixed set of vehicles which might belong to dfferent collaborating transportation agencies. A recently proposed solution methodology for this problem is the use of a multi-agent system where shipper agents other jobs through sequential auctions and vehicle agents bid on these jobs. In this paper we consider such a multi-agent system where both the vehicle agents and the shipper agents are using profit maximizing look-ahead strategies. Our main contribution is that we study the interrelation of these strategies and their impact on the system-wide logistical costs. From our simulation results, we conclude that the system-wide logistical costs (i) are always reduced by using the look-ahead policies instead of a myopic policy (10-20%) and (ii) the joint effect of two look-ahead policies is larger than the effect of an individual policy. To provide an indication of the savings that might be realized with a central solution methodology, we benchmark our results against an integer programming approach

    A Survey On Multi Trip Vehicle Routing Problem

    Get PDF
    The vehicle routing problem (VRP) and its variants are well known and greatly explored in the transportation literature. The vehicle routing problem can be considered as the scheduling of vehicles (trucks) to a set of customers under various side constraints. In most studies, a fundamental assumption is that a vehicle dispatched for service finishes its duty in that scheduling period after it returns back to the depot. Clearly, in many cases this assumption may not hold. Thus, in the last decade some studies appeared in the literature where this basic assumption is relaxed, and it is allowed for a vehicle to make multiple trips per period. We consider this new variant of the VRP an important one with direct practical impact. In this survey, we define the vehicle routing problem with multiple trips, define the current state-of-the-art, and report existing results from the current literature

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    Investigating the Vehicle Routing Problem with Simultaneous Pickup and Delivery in Multi-Product Distribution: An Optimization Approach

    Get PDF
    This study addresses a method to solve the Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD), which carries multi-products in multiple compartments within a single-vehicle. The unique characteristics of the study is on the route determination of the vehicle from the depot to customers because not only does it consider the vehicle’s capacity but also the compartment capacity of each product as a limitation We calculate the set of instances using two customer grouping methods namely smallest maximum load (SML) and largest maximum load (LML). The solution obtained by the cheapest insertion method can be improved by the Tabu Search algorithm. Finally, the computational result is reported from the test instance

    New variants of the time-dependent vehicle routing problem with time windows

    Get PDF

    New variants of the time-dependent vehicle routing problem with time windows

    Get PDF

    Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

    Get PDF
    abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    INTEGRATED HUB LOCATION AND CAPACITATED VEHICLE ROUTING PROBLEM OVER INCOMPLETE HUB NETWORKS

    Get PDF
    Hub location problem is one of the most important topics encountered in transportation and logistics management. Along with the question of where to position hub facilities, how routes are determined is a further challenging problem. Although these two problems are often considered separately in the literature, here, in this study, the two are analyzed together. Firstly, we relax the restriction that a vehicle serves between each demand center and hub pair and propose a mixed-integer mathematical model for the single allocation p-hub median and capacitated vehicle routing problem with simultaneous pick-up and delivery. Moreover, while many studies in hub location problem literature assume that there is a complete hub network structure, we also relax this assumption and present the aforementioned model over incomplete hub networks. Computational analyses of the proposed models were conducted on various instances on the Turkish network. Results indicate that the different capacity levels of vehicles have an important impact on optimal hub locations, hub arc networks, and routing design
    • …
    corecore