2,261 research outputs found

    Proceedings of the 4th field robot event 2006, Stuttgart/Hohenheim, Germany, 23-24th June 2006

    Get PDF
    Zeer uitgebreid verslag van het 4e Fieldrobotevent, dat gehouden werd op 23 en 24 juni 2006 in Stuttgart/Hohenhei

    The development and evaluation of computer vision algorithms for the control of an autonomous horticultural vehicle

    Get PDF
    Economic and environmental pressures have led to a demand for reduced chemical use in crop production. In response to this, precision agriculture techniques have been developed that aim to increase the efficiency of farming operations by more targeted application of chemical treatment. The concept of plant scale husbandry (PSH) has emerged as the logical extreme of precision techniques, where crop and weed plants are treated on an individual basis. To investigate the feasibility of PSH, an autonomous horticultural vehicle has been developed at the Silsoe Research Institute. This thesis describes the development of computer vision algorithms for the experimental vehicle which aim to aid navigation in the field and also allow differential treatment of crop and weed. The algorithm, based upon an extended Kalman filter, exploits the semi-structured nature of the field environment in which the vehicle operates, namely the grid pattern formed by the crop planting. By tracking this grid pattern in the images captured by the vehicles camera as it traverses the field, it is possible to extract information to aid vehicle navigation, such as bearing and offset from the grid of plants. The grid structure can also act as a cue for crop/weed discrimination on the basis of plant position on the ground plane. In addition to tracking the grid pattern, the Kalman filter also estimates the mean distances between the rows of lines and plants in the grid, to cater for variations in the planting procedure. Experiments are described which test the localisation accuracy of the algorithms in offline trials with data captured from the vehicle's camera, and on-line in both a simplified testbed environment and the field. It is found that the algorithms allow safe navigation along the rows of crop. Further experiments demonstrate the crop/weed discrimination performance of the algorithm, both off-line and on-line in a crop treatment experiment performed in the field where all of the crop plants are correctly targeted and no weeds are mistakenly treated

    Fleets of robots for environmentally-safe pest control in agriculture

    Get PDF
    Feeding the growing global population requires an annual increase in food production. This requirement suggests an increase in the use of pesticides, which represents an unsustainable chemical load for the environment. To reduce pesticide input and preserve the environment while maintaining the necessary level of food production, the efficiency of relevant processes must be drastically improved. Within this context, this research strived to design, develop, test and assess a new generation of automatic and robotic systems for effective weed and pest control aimed at diminishing the use of agricultural chemical inputs, increasing crop quality and improving the health and safety of production operators. To achieve this overall objective, a fleet of heterogeneous ground and aerial robots was developed and equipped with innovative sensors, enhanced end-effectors and improved decision control algorithms to cover a large variety of agricultural situations. This article describes the scientific and technical objectives, challenges and outcomes achieved in three common crops

    Precision Weed Management Based on UAS Image Streams, Machine Learning, and PWM Sprayers

    Get PDF
    Weed populations in agricultural production fields are often scattered and unevenly distributed; however, herbicides are broadcast across fields evenly. Although effective, in the case of post-emergent herbicides, exceedingly more pesticides are used than necessary. A novel weed detection and control workflow was evaluated targeting Palmer amaranth in soybean (Glycine max) fields. High spatial resolution (0.4 cm) unmanned aircraft system (UAS) image streams were collected, annotated, and used to train 16 object detection convolutional neural networks (CNNs; RetinaNet, Faster R-CNN, Single Shot Detector, and YOLO v3) each trained on imagery with 0.4, 0.6, 0.8, and 1.2 cm spatial resolutions. Models were evaluated on imagery from four production fields containing approximately 7,800 weeds. The highest performing model was Faster R-CNN trained on 0.4 cm imagery (precision = 0.86, recall = 0.98, and F1-score = 0.91). A site-specific workflow leveraging the highest performing trained CNN models was evaluated in replicated field trials. Weed control (%) was compared between a broadcast treatment and the proposed site-specific workflow which was applied using a pulse-width modulated (PWM) sprayer. Results indicate no statistical (p \u3c .05) difference in weed control measured one (M = 96.22%, SD = 3.90 and M = 90.10%, SD = 9.96), two (M = 95.15%, SD = 5.34 and M = 89.64%, SD = 8.58), and three weeks (M = 88.55, SD = 11.07 and M = 81.78%, SD = 13.05) after application between broadcast and site-specific treatments, respectively. Furthermore, there was a significant (p \u3c 0.05) 48% mean reduction in applied area (m2) between broadcast and site-specific treatments across both years. Equivalent post application efficacy can be achieved with significant reductions in herbicides if weeds are targeted through site-specific applications. Site-specific weed maps can be generated and executed using accessible technologies like UAS, open-source CNNs, and PWM sprayers

    Precision Weed Management Based on UAS Image Streams, Machine Learning, and PWM Sprayers

    Get PDF
    Weed populations in agricultural production fields are often scattered and unevenly distributed; however, herbicides are broadcast across fields evenly. Although effective, in the case of post-emergent herbicides, exceedingly more pesticides are used than necessary. A novel weed detection and control workflow was evaluated targeting Palmer amaranth in soybean (Glycine max) fields. High spatial resolution (0.4 cm) unmanned aircraft system (UAS) image streams were collected, annotated, and used to train 16 object detection convolutional neural networks (CNNs; RetinaNet, Faster R-CNN, Single Shot Detector, and YOLO v3) each trained on imagery with 0.4, 0.6, 0.8, and 1.2 cm spatial resolutions. Models were evaluated on imagery from four production fields containing approximately 7,800 weeds. The highest performing model was Faster R-CNN trained on 0.4 cm imagery (precision = 0.86, recall = 0.98, and F1-score = 0.91). A site-specific workflow leveraging the highest performing trained CNN models was evaluated in replicated field trials. Weed control (%) was compared between a broadcast treatment and the proposed site-specific workflow which was applied using a pulse-width modulated (PWM) sprayer. Results indicate no statistical (p \u3c .05) difference in weed control measured one (M = 96.22%, SD = 3.90 and M = 90.10%, SD = 9.96), two (M = 95.15%, SD = 5.34 and M = 89.64%, SD = 8.58), and three weeks (M = 88.55, SD = 11.07 and M = 81.78%, SD = 13.05) after application between broadcast and site-specific treatments, respectively. Furthermore, there was a significant (p \u3c 0.05) 48% mean reduction in applied area (m2) between broadcast and site-specific treatments across both years. Equivalent post application efficacy can be achieved with significant reductions in herbicides if weeds are targeted through site-specific applications. Site-specific weed maps can be generated and executed using accessible technologies like UAS, open-source CNNs, and PWM sprayers

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Exploiting the Internet Resources for Autonomous Robots in Agriculture

    Get PDF
    Autonomous robots in the agri-food sector are increasing yearly, promoting the application of precision agriculture techniques. The same applies to online services and techniques implemented over the Internet, such as the Internet of Things (IoT) and cloud computing, which make big data, edge computing, and digital twins technologies possible. Developers of autonomous vehicles understand that autonomous robots for agriculture must take advantage of these techniques on the Internet to strengthen their usability. This integration can be achieved using different strategies, but existing tools can facilitate integration by providing benefits for developers and users. This study presents an architecture to integrate the different components of an autonomous robot that provides access to the cloud, taking advantage of the services provided regarding data storage, scalability, accessibility, data sharing, and data analytics. In addition, the study reveals the advantages of integrating new technologies into autonomous robots that can bring significant benefits to farmers. The architecture is based on the Robot Operating System (ROS), a collection of software applications for communication among subsystems, and FIWARE (Future Internet WARE), a framework of open-source components that accelerates the development of intelligent solutions. To validate and assess the proposed architecture, this study focuses on a specific example of an innovative weeding application with laser technology in agriculture. The robot controller is distributed into the robot hardware, which provides real-time functions, and the cloud, which provides access to online resources. Analyzing the resulting characteristics, such as transfer speed, latency, response and processing time, and response status based on requests, enabled positive assessment of the use of ROS and FIWARE for integrating autonomous robots and the Internet
    • …
    corecore