243 research outputs found

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table

    Joint model-based recognition and localization of overlapped acoustic events using a set of distributed small microphone arrays

    Get PDF
    In the analysis of acoustic scenes, often the occurring sounds have to be detected in time, recognized, and localized in space. Usually, each of these tasks is done separately. In this paper, a model-based approach to jointly carry them out for the case of multiple simultaneous sources is presented and tested. The recognized event classes and their respective room positions are obtained with a single system that maximizes the combination of a large set of scores, each one resulting from a different acoustic event model and a different beamformer output signal, which comes from one of several arbitrarily-located small microphone arrays. By using a two-step method, the experimental work for a specific scenario consisting of meeting-room acoustic events, either isolated or overlapped with speech, is reported. Tests carried out with two datasets show the advantage of the proposed approach with respect to some usual techniques, and that the inclusion of estimated priors brings a further performance improvement.Comment: Computational acoustic scene analysis, microphone array signal processing, acoustic event detectio

    SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization

    Get PDF
    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field

    Mathematical modelling ano optimization strategies for acoustic source localization in reverberant environments

    Get PDF
    La presente Tesis se centra en el uso de técnicas modernas de optimización y de procesamiento de audio para la localización precisa y robusta de personas dentro de un entorno reverberante dotado con agrupaciones (arrays) de micrófonos. En esta tesis se han estudiado diversos aspectos de la localización sonora, incluyendo el modelado, la algoritmia, así como el calibrado previo que permite usar los algoritmos de localización incluso cuando la geometría de los sensores (micrófonos) es desconocida a priori. Las técnicas existentes hasta ahora requerían de un número elevado de micrófonos para obtener una alta precisión en la localización. Sin embargo, durante esta tesis se ha desarrollado un nuevo método que permite una mejora de más del 30\% en la precisión de la localización con un número reducido de micrófonos. La reducción en el número de micrófonos es importante ya que se traduce directamente en una disminución drástica del coste y en un aumento de la versatilidad del sistema final. Adicionalmente, se ha realizado un estudio exhaustivo de los fenómenos que afectan al sistema de adquisición y procesado de la señal, con el objetivo de mejorar el modelo propuesto anteriormente. Dicho estudio profundiza en el conocimiento y modelado del filtrado PHAT (ampliamente utilizado en localización acústica) y de los aspectos que lo hacen especialmente adecuado para localización. Fruto del anterior estudio, y en colaboración con investigadores del instituto IDIAP (Suiza), se ha desarrollado un sistema de auto-calibración de las posiciones de los micrófonos a partir del ruido difuso presente en una sala en silencio. Esta aportación relacionada con los métodos previos basados en la coherencia. Sin embargo es capaz de reducir el ruido atendiendo a parámetros físicos previamente conocidos (distancia máxima entre los micrófonos). Gracias a ello se consigue una mejor precisión utilizando un menor tiempo de cómputo. El conocimiento de los efectos del filtro PHAT ha permitido crear un nuevo modelo que permite la representación 'sparse' del típico escenario de localización. Este tipo de representación se ha demostrado ser muy conveniente para localización, permitiendo un enfoque sencillo del caso en el que existen múltiples fuentes simultáneas. La última aportación de esta tesis, es el de la caracterización de las Matrices TDOA (Time difference of arrival -Diferencia de tiempos de llegada, en castellano-). Este tipo de matrices son especialmente útiles en audio pero no están limitadas a él. Además, este estudio transciende a la localización con sonido ya que propone métodos de reducción de ruido de las medias TDOA basados en una representación matricial 'low-rank', siendo útil, además de en localización, en técnicas tales como el beamforming o el autocalibrado

    Online Localization and Tracking of Multiple Moving Speakers in Reverberant Environments

    Get PDF
    We address the problem of online localization and tracking of multiple moving speakers in reverberant environments. The paper has the following contributions. We use the direct-path relative transfer function (DP-RTF), an inter-channel feature that encodes acoustic information robust against reverberation, and we propose an online algorithm well suited for estimating DP-RTFs associated with moving audio sources. Another crucial ingredient of the proposed method is its ability to properly assign DP-RTFs to audio-source directions. Towards this goal, we adopt a maximum-likelihood formulation and we propose to use an exponentiated gradient (EG) to efficiently update source-direction estimates starting from their currently available values. The problem of multiple speaker tracking is computationally intractable because the number of possible associations between observed source directions and physical speakers grows exponentially with time. We adopt a Bayesian framework and we propose a variational approximation of the posterior filtering distribution associated with multiple speaker tracking, as well as an efficient variational expectation-maximization (VEM) solver. The proposed online localization and tracking method is thoroughly evaluated using two datasets that contain recordings performed in real environments.Comment: IEEE Journal of Selected Topics in Signal Processing, 201

    Speaker Localization and Detection in Videoconferencing Environments Using a Modified SRP-PHAT Algorithm

    Full text link
    [EN] The Steered Response Power - Phase Transform (SRP-PHAT) algorithm has been shown to be one of the most robust sound source localization approaches operating in noisy and reverberant environments. However, its practical implementation is usually based on a costly fine grid-search procedure, making the computational cost of the method a real issue. In this paper, we introduce an effective strategy which performs a full exploration of the sampled space rather than computing the SRP at discrete spatial positions, increasing its robustness and allowing for a coarser spatial grid that reduces the computational cost required in a practical implementation. The modified SRP-PHAT functional has been successfully implemented in a real time speaker localization system for multiparticipant videoconferencing environments. Moreover, a localization-based speech-non speech frame discriminator is presented.This work was supported by the Ministry of Education and Science under the project TEC2009-14414-C03-01.Martí Guerola, A.; Cobos Serrano, M.; Aguilera Martí, E.; López Monfort, JJ. (2011). Speaker Localization and Detection in Videoconferencing Environments Using a Modified SRP-PHAT Algorithm. Waves. 3:40-47. http://hdl.handle.net/10251/57648S4047

    Exploiting a geometrically sampled grid in the steered response power algorithm for localization improvement

    Get PDF
    The steered response power phase transform (SRP-PHAT) is a beamformer method very attractive in acoustic localization applications due to its robustness in reverberant environments. This paper presents a spatial grid design procedure, called the geometrically sampled grid (GSG), which aims at computing the spatial grid by taking into account the discrete sampling of time difference of arrival (TDOA) functions and the desired spatial resolution. A SRP-PHAT localization algorithm based on the GSG method is also introduced. The proposed method exploits the intersections of the discrete hyperboloids representing the TDOA information domain of the sensor array, and projects the whole TDOA information on the space search grid. The GSG method thus allows one to design the sampled spatial grid which represents the best search grid for a given sensor array, it allows one to perform a sensitivity analysis of the array and to characterize its spatial localization accuracy, and it may assist the system designer in the reconfiguration of the array. Experimental results using both simulated data and real recordings show that the localization accuracy is substantially improved both for high and for low spatial resolution, and that it is closely related to the proposed power response sensitivity measure

    EXPERIMENTAL EVALUATION OF MODIFIED PHASE TRANSFORM FOR SOUND SOURCE DETECTION

    Get PDF
    The detection of sound sources with microphone arrays can be enhanced through processing individual microphone signals prior to the delay and sum operation. One method in particular, the Phase Transform (PHAT) has demonstrated improvement in sound source location images, especially in reverberant and noisy environments. Recent work proposed a modification to the PHAT transform that allows varying degrees of spectral whitening through a single parameter, andamp;acirc;, which has shown positive improvement in target detection in simulation results. This work focuses on experimental evaluation of the modified SRP-PHAT algorithm. Performance results are computed from actual experimental setup of an 8-element perimeter array with a receiver operating characteristic (ROC) analysis for detecting sound sources. The results verified simulation results of PHAT- andamp;acirc; in improving target detection probabilities. The ROC analysis demonstrated the relationships between various target types (narrowband and broadband), room reverberation levels (high and low) and noise levels (different SNR) with respect to optimal andamp;acirc;. Results from experiment strongly agree with those of simulations on the effect of PHAT in significantly improving detection performance for narrowband and broadband signals especially at low SNR and in the presence of high levels of reverberation
    • …
    corecore