1,030 research outputs found

    Interactive Feature Selection and Visualization for Large Observational Data

    Get PDF
    Data can create enormous values in both scientific and industrial fields, especially for access to new knowledge and inspiration of innovation. As the massive increases in computing power, data storage capacity, as well as capability of data generation and collection, the scientific research communities are confronting with a transformation of exploiting the advanced uses of the large-scale, complex, and high-resolution data sets in situation awareness and decision-making projects. To comprehensively analyze the big data problems requires the analyses aiming at various aspects which involves of effective selections of static and time-varying feature patterns that fulfills the interests of domain users. To fully utilize the benefits of the ever-growing size of data and computing power in real applications, we proposed a general feature analysis pipeline and an integrated system that is general, scalable, and reliable for interactive feature selection and visualization of large observational data for situation awareness. The great challenge tackled in this dissertation was about how to effectively identify and select meaningful features in a complex feature space. Our research efforts mainly included three aspects: 1. Enable domain users to better define their interests of analysis; 2. Accelerate the process of feature selection; 3. Comprehensively present the intermediate and final analysis results in a visualized way. For static feature selection, we developed a series of quantitative metrics that related the user interest with the spatio-temporal characteristics of features. For timevarying feature selection, we proposed the concept of generalized feature set and used a generalized time-varying feature to describe the selection interest. Additionally, we provided a scalable system framework that manages both data processing and interactive visualization, and effectively exploits the computation and analysis resources. The methods and the system design together actualized interactive feature selections from two representative large observational data sets with large spatial and temporal resolutions respectively. The final results supported the endeavors in applications of big data analysis regarding combining the statistical methods with high performance computing techniques to visualize real events interactively

    A survey of temporal knowledge discovery paradigms and methods

    Get PDF
    With the increase in the size of data sets, data mining has recently become an important research topic and is receiving substantial interest from both academia and industry. At the same time, interest in temporal databases has been increasing and a growing number of both prototype and implemented systems are using an enhanced temporal understanding to explain aspects of behavior associated with the implicit time-varying nature of the universe. This paper investigates the confluence of these two areas, surveys the work to date, and explores the issues involved and the outstanding problems in temporal data mining

    Explain3D: Explaining Disagreements in Disjoint Datasets

    Get PDF
    Data plays an important role in applications, analytic processes, and many aspects of human activity. As data grows in size and complexity, we are met with an imperative need for tools that promote understanding and explanations over data-related operations. Data management research on explanations has focused on the assumption that data resides in a single dataset, under one common schema. But the reality of today's data is that it is frequently un-integrated, coming from different sources with different schemas. When different datasets provide different answers to semantically similar questions, understanding the reasons for the discrepancies is challenging and cannot be handled by the existing single-dataset solutions. In this paper, we propose Explain3D, a framework for explaining the disagreements across disjoint datasets (3D). Explain3D focuses on identifying the reasons for the differences in the results of two semantically similar queries operating on two datasets with potentially different schemas. Our framework leverages the queries to perform a semantic mapping across the relevant parts of their provenance; discrepancies in this mapping point to causes of the queries' differences. Exploiting the queries gives Explain3D an edge over traditional schema matching and record linkage techniques, which are query-agnostic. Our work makes the following contributions: (1) We formalize the problem of deriving optimal explanations for the differences of the results of semantically similar queries over disjoint datasets. (2) We design a 3-stage framework for solving the optimal explanation problem. (3) We develop a smart-partitioning optimizer that improves the efficiency of the framework by orders of magnitude. (4)~We experiment with real-world and synthetic data to demonstrate that Explain3D can derive precise explanations efficiently
    • …
    corecore