34,878 research outputs found

    Arctic Standards: Recommendations on Oil Spill Prevention, Response, and Safety in the U.S. Arctic Ocean

    Get PDF
    Oil spilled in Arctic waters would be particularly difficult to remove. Current technology has not been proved to effectively clean up oil when mixed with ice or when trapped under ice. An oil spill would have a profoundly adverse impact on the rich and complex ecosystem found nowhere else in the United States. The Arctic Ocean is home to bowhead, beluga, and gray whales; walruses; polar bears; and other magnificent marine mammals, as well as millions of migratory birds. A healthy ocean is important for these species and integral to the continuation of hunting and fishing traditions practiced by Alaska Native communities for thousands of years.To aid the United States in its efforts to modernize Arctic technology and equipment standards, this report examines the fierce Arctic conditions in which offshore oil and gas operations could take place and then offers a summary of key recommendations for the Interior Department to consider as it develops world-class, Arctic-specific regulatory standards for these activities. Pew's recommendations call for improved technology,equipment, and procedural requirements that match the challenging conditions in the Arctic and for full public participation and transparency throughout the decision-making process. Pew is not opposed to offshore drilling, but a balance must be achieved between responsible energy development and protection of the environment.It is essential that appropriate standards be in place for safety and for oil spill prevention and response in this extreme, remote, and vulnerable ecosystem. This report recommends updating regulations to include Arctic specific requirements and codifying temporary guidance into regulation. The appendixes to this report provide substantially more detail on the report's recommendations, including technical background documentation and additional referenced materials. Please refer to the full set of appendixes for a complete set of recommendations. This report and its appendixes offer guidelines for responsible hydrocarbon development in the U.S. Arctic Ocean

    Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    Get PDF
    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from similar to 25 degrees N to 20 degrees S and compare the results with those from Atlantic meridional transects (similar to 50 degrees N to 50 degrees S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 mu mol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain similar to 10% of primary production in both the western tropical Pacific

    Using the beat histogram for speech rhythm description and language identification

    Get PDF
    In this paper we present a novel approach for the description of speech rhythm and the extraction of rhythm-related features for automatic language identification (LID). Previous methods have extracted speech rhythm through the calculation of features based on salient elements of speech such as consonants, vowels and syllables. We present how an automatic rhythm extraction method borrowed from music information retrieval, the beat histogram, can be adapted for the analysis of speech rhythm by defining the most relevant novelty functions in the speech signal and extracting features describing their periodicities. We have evaluated those features in a rhythm-based LID task for two multilingual speech corpora using support vector machines, including feature selection methods to identify the most informative descriptors. Results suggest that the method is successful in describing speech rhythm and provides LID classification accuracy comparable to or better than that of other approaches, without the need for a preceding segmentation or annotation of the speech signal. Concerning rhythm typology, the rhythm class hypothesis in its original form seems to be only partly confirmed by our results

    Barycentres and Hurricane Trajectories

    Full text link
    The use of barycentres in data analysis is illustrated, using as example a dataset of hurricane trajectories.Comment: 19 pages, 7 figures. Contribution to Mardia festschrift "Geometry Driven Statistics". Version 2: added further reference to HURDAT2 data format. Version 3: various minor corrections, and added dedication to Mardi
    corecore