164 research outputs found

    A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This paper presents a modeling framework for schedulability analysis of distributed integrated modular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in UPPAAL to analyze its schedulability by classical model checking (MC) and statistical model checking (SMC). The framework has been designed to enable three types of analysis: global SMC, global MC, and compositional MC. This allows an effective methodology including (1) quick schedulability falsification using global SMC analysis, (2) direct schedulability proofs using global MC analysis in simple cases, and (3) strict schedulability proofs using compositional MC analysis for larger state space. The framework is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    Scheduling Based on Interruption Analysis and PSO for Strictly Periodic and Preemptive Partitions in Integrated Modular Avionics

    Get PDF
    Integrated modular avionics introduces the concept of partition and has been widely used in avionics industry. Partitions share the computing resources together. Partition scheduling plays a key role in guaranteeing correct execution of partitions. In this paper, a strictly periodic and preemptive partition scheduling strategy is investigated. First, we propose a partition scheduling model that allows a partition to be interrupted by other partitions, but minimizes the number of interruptions. The model not only retains the execution reliability of the simple partition sets that can be scheduled without interruptions, but also enhances the schedulability of the complex partition sets that can only be scheduled with some interruptions. Based on the model, we propose an optimization framework. First, an interruption analysis method to decide whether a partition set can be scheduled without interruptions is developed. Then, based on the analysis of the scheduling problem, we use the number of interruptions and the sum of execution time for all partitions in a major time frame as the optimization objective functions and use particle swarm optimization (PSO) to solve the optimization problem when the partition sets cannot be scheduled without interruptions. We improve the update strategy for the particles beyond the search space and round all particles before calculating the fitness value in PSO. Finally, the experiments with different partitions are conducted and the results validate the partition scheduling model and illustrate the effectiveness of the optimization framework. In addition, other optimization algorithms, such as genetic algorithm and neural networks, can also be used to solve the partition problem based on our model and solution framework

    Model-based optimization of ARINC-653 partition scheduling

    Get PDF

    A Multi-Core Interference-Aware Schedulability Test for IMA Systems, as a Guide for SW/HW Integration

    Get PDF
    International audienceIn this paper we propose a framework for the automated integration and timing analysis of IMA (Integrated Modular Avionics) applications on multi-core environments. To do so, we present a derivation of the response time analysis formulation by Kim et al. in [12] that takes into account inter-task interference due to sharing the access to the main memory. We adapt the work in [12] to propose a sufficient schedulability test that is adapted both to IMA systems and heterogeneous multi-core platforms. We then exploit this test to guide the design space exploration during the SW/HW integration phase, to select a partition-to-core allocation so that all deadlines are met despite the existence of hardware interference

    Real-time hierarchical systems with arbitrary scheduling at global level

    Full text link
    [EN] Partitioned architectures isolate software components into independent partitions whose execution will not interfere with other partitions, preserving temporal and spatial isolation. Hierarchical scheduling can effectively be used to schedule these systems. Schedulability analysis of hierarchical real-time systems is based on prior knowledge of the local and the global scheduling algorithms. In a partitioned system with safety and security issues and certification assurance levels, global scheduling is usually generated using a static table. Therefore, each partition must allocate task jobs only in the temporal windows reserved for that partition. Even if the static table can come originally from a periodic server or other scheduling policy, the final plan may be modified due to changes in the system requirements. As a consequence, the CPU assignment to a partition does not have to correspond to any known policy. In this case, it is not possible to use existing scheduling analysis for hierarchical systems. This paper studies a new scheduling problem: a hierarchical system in which global policy is not known but provided as a set of arbitrary time windows.This work has been funded by the Spanish government under grant TIN2014-56158-C4-1-P-AR and by the European Commission under FP7-ICT-2013.3.4 Programme with grant 610640Guasque Ortega, A.; Balbastre, P.; Crespo, A. (2016). Real-time hierarchical systems with arbitrary scheduling at global level. Journal of Systems and Software. 119:70-86. https://doi.org/10.1016/j.jss.2016.05.040S708611

    Heterogeneous models and analyses in the design of real-time embedded systems - an avionic case-study

    Get PDF
    The development of embedded systems according to Model-Driven Development relies on two complementary activities: system mod- eling on the one hand and analysis of the non-functional properties, such as timing properties, on the other hand. Yet, the coupling be- tween models and analyses remains largely disregarded so far: e.g. how to apply an analysis on a model? How to manage the analysis process? This paper presents an application of our research on this topic. In particular, we show that our approach makes it possible to combine heterogeneous models and analyses in the design of an avionic system. We use two languages to model the system at di erent levels of abstraction: the industry standard AADL (Ar- chitecture Analysis and Design Language) and the more recent implementation-oriented CPAL language (Cyber-Physical Action Language). We then combine di erent real-time scheduling analy- ses so as to gradually de ne the task and network parameters and nally validate the schedulability of all activities of the system

    Design of Energy-efficient Hierarchical Scheduling for Integrated Modular Avionics Systems

    Get PDF
    AbstractRecently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitions becomes popular as an alternative to the traditional federated architecture. This study investigates the problem of designing hierarchical scheduling for IMA systems. The proposed scheduler model enables strong temporal partitioning, so that multiple hard real-time applications can be easily integrated into an uniprocessor platform. This paper derives the mathematic relationships among partition cycle, partition capacity and schedulability under the real-time condition, and then proposes an algorithm for optimizing partition parameters. Real-time tasks with arbitrary deadlines are considered for generality. To further improve the basic algorithm and reduce the energy consumption for embedded systems in aircraft, a power optimization approach is also proposed by exploiting the slack time. Experimental results show that the designed system can guarantee the hard real-time requirement and reduce the power consumption by at least 14%

    Study, analysis and new scheduling proposals in partitioned real-time systems

    Full text link
    [ES] En nuestra vida cotidiana, cada vez más ordenadores controlan nuestro entorno: teléfonos móviles, procesos industriales, asistencia a la conducción, etc. Todos estos sistemas presentan requisitos estrictos para garantizar un comportamiento adecuado. En muchos de estos sistemas, cumplir con las restricciones de tiempo es un factor tan importante como el resultado lógico de los cálculos. Desde hace aproximadamente 40 años, los sistemas en tiempo real son muy atractivos en el campo de la computación y hoy en día se aplican en áreas de gran alcance como aplicaciones industriales, aplicaciones aeroespaciales, telecomunicaciones, electrónica de consumo, etc. Algunos retos a abordar en el campo del tiempo real son el determinismo y la predecibilidad del comportamiento temporal del sistema. En este sentido, garantizar la ejecución del programa y los tiempos de respuesta del sistema son requisitos esenciales que deben cumplirse estrictamente a través de estrategias apropiadas de planificación de tareas. Además, las arquitecturas multiprocesador se están volviendo más populares debido al hecho de que las capacidades de procesamiento y los recursos computacionales de los sistemas están aumentando. Un estudio reciente estima que existe una tendencia creciente entre las arquitecturas multiprocesador a combinar diferentes niveles de criticidad en el mismo sistema. En este sentido, proporcionar aislamiento entre las aplicaciones es extremadamente necesario. La tecnología particionada es capaz de lidiar con este propósito. Además, la gestión de la energía es un problema relevante en los sistemas en tiempo real. Muchos sistemas empotrados de tiempo real, como dispositivos portátiles o robots móviles que requieren baterías, buscan encontrar técnicas que reduzcan el consumo de energía y, como consecuencia, aumenten la vida útil de sus baterías. También se obtienen claros beneficios operativos, financieros, monetarios y ambientales al minimizar el consumo de energía. Con todo ello, este trabajo aborda el problema de planificabilidad y contribuye al estudio de las nuevas técnicas de planificación en sistemas particionados de tiempo real. Estas técnicas proporcionan el tiempo mínimo para planificar de manera factible conjuntos de tareas. Además, se proponen técnicas de asignación para sistemas multiprocesador cuyo objetivo principal es reducir el consumo de energía del sistema global. Finalmente, se presentan los resultados obtenidos así como los trabajos futuros relacionados con este trabajo[CA] En la nostra vida quotidiana, cada vegada més ordenadors controlen el nostre entorn: telèfons mòbils, processos industrials, assistència a la conducció, etc. Tots aquests sistemes presenten requisits estrictes per a garantir un comportament adequat. En molts d' aquests sistemes, complir amb les restriccions de temps és un factor tan important com el resultat lògic dels càlculs. Des de fa aproximadament 40 anys, els sistemes en temps real són molt atractius en el camp de la computació i hui dia s' apliquen en àrees de gran abast com a aplicacions industrials, aplicacions aeroespacials, telecomunicacions, electrònica de consum, etc. Alguns reptes a abordar en el camp del temps real són el determinisme i la predictibilitat del comportament temporal del sistema. En aquest sentit, garantir l'execució del programa i els temps de resposta del sistema són requisits essencials que han de complir-se estrictament a través d'estratègies apropiades de planificació de tasques. A més, les arquitectures multiprocessador s'estan tornant més populars a causa del fet que les capacitats de processament i els recursos computacionals dels sistemes estan augmentant. Un estudi recent estima que existeix una tendència creixent entre les arquitectures multiprocessador a combinar diferents nivells de criticitat en el mateix sistema. En aquest sentit, proporcionar aïllament entre les aplicacions és extremadament necessari. La tecnologia particionada és capaç de bregar amb aquest propòsit. A més, la gestió de l'energia és un problema rellevant en els sistemes en temps real. Molts sistemes embebits de temps real, com a dispositius portàtils o robots mòbils que requereixen bateries, busquen trobar tècniques que reduïsquen el consum d'energia i, com a conseqüència, augmenten la vida útil de les seues bateries. També s'obtenen clars beneficis operatius, financers, monetaris i ambientals en minimitzar el consum d'energia. Amb tot això, aquest treball aborda el problema de planificabilitat i contribueix a l'estudi de les noves tècniques de planificació en sistemes particionats de temps real. Aquestes tècniques proporcionen el temps mínim per a planificar de manera factible conjunts de tasques. A més, es proposen tècniques d'assignació per a sistemes multiprocessador l'objectiu principal del qual és reduir el consum d'energia del sistema global. Finalment, es presenten els resultats obtinguts així com els treballs futurs relacionats amb aquest treball.[EN] In our everyday lives, more and more computers are controlling our environment: mobile phones, industrial processes, driving assistance, etc. All these systems present strict requirements to ensure proper behaviour. In many of these systems, the time at which the action is delivered is as important as the logical result of the computation. About 40 years ago, real-time systems began to attract attention in computing field and nowadays are applied in wide ranging areas as industrial applications, aerospace, telecommunication applications, consumer electronics, etc. Some real-time challenges that must be addressed are determinism and predictability of the temporal behaviour of the system. In this sense, to guarantee program execution and system response times are essential requirements that must be strictly met through appropriate task scheduling strategies. Furthermore, multiprocessor architectures are becoming more popular due to the fact that processing capabilities and computational resources are increasing. A recent study estimates that there is an increasing tendency among multiprocessor architectures to combine different levels of criticality in the same system. In this sense, to provide isolation between applications is extremely required. Partitioned technology is able to deal with this purpose. In addition, energy management is a relevant problem in real-time systems. Many real-time embedded systems, as wearable devices or mobile robots that require batteries, seek to find techniques that reduce the energy consumption and, as a consequence, increase the lifetime of their batteries. Also clear operational, financial, monetary and environmental gains are reached when minimizing energy consumption. Faced with all this, this work addresses the problem of schedulability and contributes to the study of new scheduling techniques in partitioned real-time systems. These techniques provide the minimum time to feasible schedule tasks sets. Moreover, allocation techniques for multicore systems whose main objective is to reduce the energy consumption of the overall system are also proposed. Finally, some of the obtained results are discussed as conclusions and future works are introduced.Guasque Ortega, A. (2019). Study, analysis and new scheduling proposals in partitioned real-time systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/135279TESI

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF
    • …
    corecore