516 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014

    Online change detection for energy-efficient mobilec crowdsensing

    Get PDF
    Mobile crowdsensing is power hungry since it requires continuously and simultaneously sensing, processing and uploading fused data from various sensor types including motion sensors and environment sensors. Realizing that being able to pinpoint change points of contexts enables energy-efficient mobile crowdsensing, we modify histogram-based techniques to efficiently detect changes, which has less computational complexity and performs better than the conventional techniques. To evaluate our proposed technique, we conducted experiments on real audio databases comprising 200 sound tracks. We also compare our change detection with multivariate normal distribution and one-class support vector machine. The results show that our proposed technique is more practical for mobile crowdsensing. For example, we show that it is possible to save 80% resource compared to standard continuous sensing while remaining detection sensitivity above 95%. This work enables energy-efficient mobile crowdsensing applications by adapting to contexts

    Evaluating Sensor Data in the Context of Mobile Crowdsensing

    Get PDF
    With the recent rise of the Internet of Things the prevalence of mobile sensors in our daily life experienced a huge surge. Mobile crowdsensing (MCS) is a new emerging paradigm that realizes the utility and ubiquity of smartphones and more precisely their incorporated smart sensors. By using the mobile phones and data of ordinary citizens, many problems have to be solved when designing an MCS-application. What data is needed in order to obtain the wanted results? Should the calculations be executed locally or on a server? How can the quality of data be improved? How can the data best be evaluated? These problems are addressed by the design of a streamlined approach of how to create an MCS-application while having all these problems in mind. In order to design this approach, an exhaustive literature research on existing MCS-applications was done and to validate this approach a new application was designed with its help. The procedure of designing and implementing this application went smoothly and thus shows the applicability of the approach

    Large-scale assessment of mobile crowdsensed data: a case study

    Get PDF
    Mobile crowdsensing (MCS) is a well-established paradigm that leverages mobile devices’ ubiquitous nature and processing capabilities for large-scale data collection to monitor phenomena of common interest. Crowd-powered data collection is significantly faster and more cost-effective than traditional methods. However, it poses challenges in assessing the accuracy and extracting information from large volumes of user-generated data. SmartRoadSense (SRS) is an MCS technology that utilises sensors embedded in mobile phones to monitor the quality of road surfaces by computing a crowdsensed road roughness index (referred to as PPE). The present work performs statistical modelling of PPE to analyse its distribution across the road network and elucidate how it can be efficiently analysed and interpreted. Joint statistical analysis of open datasets is then carried out to investigate the effect of both internal and external road features on PPE . Several road properties affecting PPE as predicted are identified, providing evidence that SRS can be effectively applied to assess road quality conditions. Finally, the effect of road category and the speed limit on the mean and standard deviation of PPE is evaluated, incorporating previous results on the relationship between vehicle speed and PPE . These results enable more effective and confident use of the SRS platform and its data to help inform road construction and renovation decisions, especially where a lack of resources limits the use of conventional approaches. The work also exemplifies how crowdsensing technologies can benefit from open data integration and highlights the importance of making coherent, comprehensive, and well-structured open datasets available to the public

    CENTURION: Incentivizing Multi-Requester Mobile Crowd Sensing

    Full text link
    The recent proliferation of increasingly capable mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to a crowd of participating workers that carry various mobile devices. Aware of the paramount importance of effectively incentivizing participation in such systems, the research community has proposed a wide variety of incentive mechanisms. However, different from most of these existing mechanisms which assume the existence of only one data requester, we consider MCS systems with multiple data requesters, which are actually more common in practice. Specifically, our incentive mechanism is based on double auction, and is able to stimulate the participation of both data requesters and workers. In real practice, the incentive mechanism is typically not an isolated module, but interacts with the data aggregation mechanism that aggregates workers' data. For this reason, we propose CENTURION, a novel integrated framework for multi-requester MCS systems, consisting of the aforementioned incentive and data aggregation mechanism. CENTURION's incentive mechanism satisfies truthfulness, individual rationality, computational efficiency, as well as guaranteeing non-negative social welfare, and its data aggregation mechanism generates highly accurate aggregated results. The desirable properties of CENTURION are validated through both theoretical analysis and extensive simulations

    Mobile crowdsensing for road sustainability: exploitability of publicly-sourced data

    Get PDF
    ABSTRACTThis paper examines the opportunities and the economic benefits of exploiting publicly-sourced datasets of road surface quality. Crowdsourcing and crowdsensing initiatives channel the parti..
    • …
    corecore