443 research outputs found

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    Advanced avionics concepts: Autonomous spacecraft control

    Get PDF
    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Validation of robotic navigation strategies in unstructured environments: from autonomous to reactive

    Get PDF
    The main topic of this master thesis is the validation of a navigation algorithm designed to perform autonomously in unstructured environments. Computer simulations and experimental tests with a mobile robot have allowed reaching the established objective. The presented approach is effective, consistent, and able to attain safe navigation with static and dynamic configurations. This work contains a survey of the principal navigation strategies and components. Afterwards, a recap of the history of robotics is briefly illustrated, emphasizing the description of mobile robotics and locomotion. Subsequently, it presents the development of an algorithm for autonomous navigation through an unknown environment for mobile robots. The algorithm seeks to compute trajectories that lead to a target unknown position without falling into a recurrent loop. The code has been entirely written and tested in MATLAB, using randomly generated obstacles of different sizes. The developed algorithm is used as a benchmark to analyze different predictive strategies for the navigation of mobile robots in the presence of environments not known a priori and overpopulated with obstacles. Then, an innovative algorithm for navigation, called NAPVIG, is described and analyzed. The algorithm has been built using ROS and tested in Gazebo real-time simulator. In order to achieve high performances, optimal parameters have been found tuning and simulating the algorithm in different environmental configurations. Finally, an experimental campaign in the SPARCS laboratory of the University of Padua enabled the validation of the chosen parameters

    Stochastic Extended LQR for Optimization-Based Motion Planning Under Uncertainty

    Get PDF
    We introduce a novel optimization-based motion planner, Stochastic Extended LQR (SELQR), which computes a trajectory and associated linear control policy with the objective of minimizing the expected value of a user-defined cost function. SELQR applies to robotic systems that have stochastic non-linear dynamics with motion uncertainty modeled by Gaussian distributions that can be state- and control-dependent. In each iteration, SELQR uses a combination of forward and backward value iteration to estimate the cost-to-come and the cost-to-go for each state along a trajectory. SELQR then locally optimizes each state along the trajectory at each iteration to minimize the expected total cost, which results in smoothed states that are used for dynamics linearization and cost function quadratization. SELQR progressively improves the approximation of the expected total cost, resulting in higher quality plans. For applications with imperfect sensing, we extend SELQR to plan in the robot's belief space. We show that our iterative approach achieves fast and reliable convergence to high-quality plans in multiple simulated scenarios involving a car-like robot, a quadrotor, and a medical steerable needle performing a liver biopsy procedure

    Cooperative Material Handling by Human and Robotic Agents:Module Development and System Synthesis

    Get PDF
    In this paper we present the results of a collaborative effort to design and implement a system for cooperative material handling by a small team of human and robotic agents in an unstructured indoor environment. Our approach makes fundamental use of human agents\u27 expertise for aspects of task planning, task monitoring, and error recovery. Our system is neither fully autonomous nor fully teleoperated. It is designed to make effective use of human abilities within the present state of the art of autonomous systems. It is designed to allow for and promote cooperative interaction between distributed agents with various capabilities and resources. Our robotic agents refer to systems which are each equipped with at least one sensing modality and which possess some capability for self-orientation and/or mobility. Our robotic agents are not required to be homogeneous with respect to either capabilities or function. Our research stresses both paradigms and testbed experimentation. Theory issues include the requisite coordination principles and techniques which are fundamental to the basic functioning of such a cooperative multi-agent system. We have constructed a testbed facility for experimenting with distributed multi-agent architectures. The required modular components of this testbed are currently operational and have been tested individually. Our current research focuses on the integration of agents in a scenario for cooperative material handling

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Robot Compatible Environment and Conditions

    Get PDF
    Service robot technology is progressing at a fast pace. Accurate robot-friendly indoor localization and harmonization of built environ-ment in alignment with digital, physical, and social environment becomes emphasized. This paper proposes the novel approach of Robot Compatible Environment (RCE) within the architectural space. Evolution of service robotics in connection with civil engineering and architecture is discussed, whereas optimum performance is to be achieved based on robots’ capabilities and spatial affordances. For ubiquitous and safe human-robot interaction, robots are to be integrated into the living environment. The aim of the research is to highlight solutions for various interconnected challenges within the built environment. Our goal is to reach findings on comparison of robotic and accessibility standards, synthesis of navigation, access to information and social acceptance. Checklists, recommendations, and design process are introduced within the RCE framework, proposing a holistic approach
    corecore