1,380 research outputs found

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    A new hybrid text encryption approach over mobile ad hoc network

    Get PDF
    Data exchange has been rapidly increased recently by increasing the use of mobile networks. Sharing information (text, image, audio and video) over unsecured mobile network channels is liable for attacking and stealing. Encryption techniques are the most suitable methods to protect information from hackers. Hill cipher algorithm is one of symmetric techniques, it has a simple structure and fast computations, but weak security because sender and receiver need to use and share the same private key within a non-secure channel. Therefore, a novel hybrid encryption approach between elliptic curve cryptosystem and hill cipher (ECCHC) is proposed in this paper to convert Hill Cipher from symmetric technique (private key) to asymmetric one (public key) and increase its security and efficiency and resist the hackers. Thus, no need to share the secret key between sender and receiver and both can generate it from the private and public keys. Therefore, the proposed approach presents a new contribution by its ability to encrypt every character in the 128 ASCII table by using its ASCII value direct without needing to assign a numerical value for each character. The main advantages of the proposed method are represented in the computation simplicity, security efficiency and faster computation

    An efficient and secure data storage in cloud computing using modified RSA public key cryptosystem

    Get PDF
    Cloud Computing is the ability to improve the utility or train new human resources without investing in new infrastructure, or add capabilities to existence without the latest software licensing. It expanded the capabilities of Information Technology (IT). From the past few years, cloud computing has developed from a good business concept in the best rising sectors of the IT industry. But more information on individuals and companies was put in the cloud, and concerns began to think about how secure the cloud environment was. Despite cloud surrounding structures, enterprise users still do not want to expand their business in the cloud. Security reduces the growth of cloud computing and continues to spread the market with complexity with data privacy and data protection. The security of cloud computing has constantly been an significant aspect of improved quality of service from cloud service providers.  Data storage in the cloud has a problem related to data security. However, cloud computing construct many new security challenges which have not been well examine. In order to ensure that the user's data in the cloud is secure, we have proposed an effective mechanism with a distinctive feature of data integrity and privacy. This paper focusing on problems relating to the cloud data storage techniques and security in virtual environment. We recommend a method for providing data storage and security in cloud using public key Cryptosystem, which uses the concept of the modified RSA algorithm to provide better security for the data stored in the cloud.

    Different Security Mechanisms for Wireless Sensor Networks

    Get PDF
    In today’s world security becomes one of the important constraints in every research field. As increasing use of Wireless Sensor Networks (WSN) in various crucial applications security of wireless networks is becoming more important day by day. Today almost each and every important area makes use of wireless sensor networks. As Wireless Sensor Network is infrastructure-less network; data moves openly from one node to another thus it can be captured easily by attackers. To avoid data from being stolen security mechanism has to be applied. Many protocols are available for providing security on wireless network. We perform a detailed study of different security mechanisms used in sensor network against some criteria such as nature of algorithm, working, its benefits and some of the disadvantages of mechanism and also compare them

    On the Development of Novel Encryption Methods for Conventional and Biometric Images

    Get PDF
    Information security refers to the technique of protecting information from unauthorized access, use, disclosure, disruption and modification. Governments, military, corporations, financial institutions, hospitals, and private businesses amass a great deal of confidential information about their employees, customers, products, research, and financial status. Most of this information is now collected, processed and stored on electronic media and transmitted across networks to other computers. Encryption clearly addresses the need for confidentiality of information, in process of storage and transmission. Popular application of multimedia technology and increasingly transmission ability of network gradually leads us to acquire information directly and clearly through images and hence the security of image data has become inevitable. Moreover in the recent years, biometrics is gaining popularity for security purposes in many applications. However, during communication and transmission over insecure network channels it has some risks of being hacked, modified and reused. Hence, there is a strong need to protect biometric images during communication and transmission. In this thesis, attempts have been made to encrypt image efficiently and to enhance the security of biometrics images during transmission. In the first contribution, three different key matrix generation methods invertible, involuntary, and permutation key matrix generation have been proposed. Invertible and involuntary key matrix generation methods solves the key matrix inversion problem in Hill cipher. Permutation key matrix generation method increases the Hill system’s security. The conventional Hill cipher technique fails to encrypt images properly if the image consists of large area covered with same colour or gray level. Thus, it does not hide all features of the image which reveals patterns in the plaintext. Moreover, it can be easily broken with a known plaintext attack revealing weak security. To address these issues two different techniques are proposed, those are advanced Hill cipher algorithm and H-S-X cryptosystem to encrypt the images properly. Security analysis of both the techniques reveals superiority of encryption and decryption of images. On the other hand, H-S-X cryptosystem has been used to instil more diffusion and confusion on the cryptanalysis. FPGA implementation of both the proposed techniques has been modeled to show the effectiveness of both the techniques. An extended Hill cipher algorithm based on XOR and zigzag operation is designed to reduce both encryption and decryption time. This technique not only reduces the encryption and decryption time but also ensures no loss of data during encryption and decryption process as compared to other techniques and possesses more resistance to intruder attack. The hybrid cryptosystem which is the combination of extended Hill cipher technique and RSA algorithm has been implemented to solve the key distribution problem and to enhance the security with reduced encryption and decryption time. Two distinct approaches for image encryption are proposed using chaos based DNA coding along with shifting and scrambling or poker shuffle to create grand disorder between the pixels of the images. In the first approach, results obtained from chaos based DNA coding scheme is shifted and scrambled to provide encryption. On the other hand in the second approach the results obtained from chaos based DNA coding encryption is followed by poker shuffle operation to generate the final result. Simulated results suggest performance superiority for encryption and decryption of image and the results obtained have been compared and discussed. Later on FPGA implementation of proposed cryptosystem has been performed. In another contribution, a modified Hill cipher is proposed which is the combination of three techniques. This proposed modified Hill cipher takes advantage of all the three techniques. To acquire the demands of authenticity, integrity, and non-repudiation along with confidentiality, a novel hybrid method has been implemented. This method has employed proposed modified Hill cipher to provide confidentiality. Produced message digest encrypted by private key of RSA algorithm to achieve other features such as authenticity, integrity, and non-repudiation To enhance the security of images, a biometric cryptosystem approach that combines cryptography and biometrics has been proposed. Under this approach, the image is encrypted with the help of fingerprint and password. A key generated with the combination of fingerprint and password and is used for image encryption. This mechanism is seen to enhance the security of biometrics images during transmission. Each proposed algorithm is studied separately, and simulation experiments are conducted to evaluate their performance. The security analyses are performed and performance compared with other competent schemes

    Extended 16x16 Play-Fair Algorithm for Secure Key Exchange Using RSA Algorithm

    Get PDF
    With the world entering in the 21st century rigorous efforts are being made to secure data and flow of information among the users. Though with the advancements are fast and efficient the third party intervention and security threats has also increased many folds. The algorithms being used to encrypt and decrypt data needs to be strong enough to secure the data but also simple enough for a user to handle the process. With this article a novel, practical approach is presented which not only makes the information more secured but also being based on RSA algorithm is easy enough for users to understand and implement into the systems

    CREDIT CARD FORGERY IDENTIFICATION SYSTEM WITH LOCATION BASED TRACKING USING MOBILES WITH GPS

    Get PDF
    In Mobile networks the user’s location, passwords might be used as authentication factor to provide security services for remote client authentication. In addition there are many typical authentication factors. In Location based Remote client Authentication Protocol for mobile environment (LRAP), combines several authentication factors to securely authenticate a mobile user. In LRAP, the user’s location can be determined by a third party used by user’s mobile for secure payment operations. This paper is to investigate a systematic approach to generate an encrypted data to real user mobile number along with decrypting key as SMS only when the location of credit card matches with the location of user’s mobile in order to avoid unauthorized access of credit card

    THRIVE: Threshold Homomorphic encryption based secure and privacy preserving bIometric VErification system

    Get PDF
    In this paper, we propose a new biometric verification and template protection system which we call the THRIVE system. The system includes novel enrollment and authentication protocols based on threshold homomorphic cryptosystem where the private key is shared between a user and the verifier. In the THRIVE system, only encrypted binary biometric templates are stored in the database and verification is performed via homomorphically randomized templates, thus, original templates are never revealed during the authentication stage. The THRIVE system is designed for the malicious model where the cheating party may arbitrarily deviate from the protocol specification. Since threshold homomorphic encryption scheme is used, a malicious database owner cannot perform decryption on encrypted templates of the users in the database. Therefore, security of the THRIVE system is enhanced using a two-factor authentication scheme involving the user's private key and the biometric data. We prove security and privacy preservation capability of the proposed system in the simulation-based model with no assumption. The proposed system is suitable for applications where the user does not want to reveal her biometrics to the verifier in plain form but she needs to proof her physical presence by using biometrics. The system can be used with any biometric modality and biometric feature extraction scheme whose output templates can be binarized. The overall connection time for the proposed THRIVE system is estimated to be 336 ms on average for 256-bit biohash vectors on a desktop PC running with quad-core 3.2 GHz CPUs at 10 Mbit/s up/down link connection speed. Consequently, the proposed system can be efficiently used in real life applications
    corecore