28,562 research outputs found

    Analysis Model in the Cloud Optimization Consumption in Pricing the Internet Bandwidt

    Get PDF
    The problem of internet pricing is a problem that is often a major problem in optimization. In this study, the internet pricing scheme focuses on optimizing the use of bandwidth consumption. This research utilizes modification of cloud model in finding optimal solution in network. Cloud computing is computational model which is like network, server, storage and service that is utilizing internet connection. As ISP's Internet service provider requires appropriate pricing schemes in order to maximize revenue and provide quality of service (Quality on Service) or QoS so as to satisfy internet users or users. The model used will be completed with the help of LINGO software program to get optimal solution and accurate result. Based on the optimal solution obtained from the modification of the cloud model can be utilized ISP to maximize revenue and provide services in accordance with needs and requests

    The state of SQL-on-Hadoop in the cloud

    Get PDF
    Managed Hadoop in the cloud, especially SQL-on-Hadoop, has been gaining attention recently. On Platform-as-a-Service (PaaS), analytical services like Hive and Spark come preconfigured for general-purpose and ready to use. Thus, giving companies a quick entry and on-demand deployment of ready SQL-like solutions for their big data needs. This study evaluates cloud services from an end-user perspective, comparing providers including: Microsoft Azure, Amazon Web Services, Google Cloud, and Rackspace. The study focuses on performance, readiness, scalability, and cost-effectiveness of the different solutions at entry/test level clusters sizes. Results are based on over 15,000 Hive queries derived from the industry standard TPC-H benchmark. The study is framed within the ALOJA research project, which features an open source benchmarking and analysis platform that has been recently extended to support SQL-on-Hadoop engines. The ALOJA Project aims to lower the total cost of ownership (TCO) of big data deployments and study their performance characteristics for optimization. The study benchmarks cloud providers across a diverse range instance types, and uses input data scales from 1GB to 1TB, in order to survey the popular entry-level PaaS SQL-on-Hadoop solutions, thereby establishing a common results-base upon which subsequent research can be carried out by the project. Initial results already show the main performance trends to both hardware and software configuration, pricing, similarities and architectural differences of the evaluated PaaS solutions. Whereas some providers focus on decoupling storage and computing resources while offering network-based elastic storage, others choose to keep the local processing model from Hadoop for high performance, but reducing flexibility. Results also show the importance of application-level tuning and how keeping up-to-date hardware and software stacks can influence performance even more than replicating the on-premises model in the cloud.This work is partially supported by the Microsoft Azure for Research program, the European Research Council (ERC) under the EUs Horizon 2020 programme (GA 639595), the Spanish Ministry of Education (TIN2015-65316-P), and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Extending Demand Response to Tenants in Cloud Data Centers via Non-intrusive Workload Flexibility Pricing

    Full text link
    Participating in demand response programs is a promising tool for reducing energy costs in data centers by modulating energy consumption. Towards this end, data centers can employ a rich set of resource management knobs, such as workload shifting and dynamic server provisioning. Nonetheless, these knobs may not be readily available in a cloud data center (CDC) that serves cloud tenants/users, because workloads in CDCs are managed by tenants themselves who are typically charged based on a usage-based or flat-rate pricing and often have no incentive to cooperate with the CDC operator for demand response and cost saving. Towards breaking such "split incentive" hurdle, a few recent studies have tried market-based mechanisms, such as dynamic pricing, inside CDCs. However, such mechanisms often rely on complex designs that are hard to implement and difficult to cope with by tenants. To address this limitation, we propose a novel incentive mechanism that is not dynamic, i.e., it keeps pricing for cloud resources unchanged for a long period. While it charges tenants based on a Usage-based Pricing (UP) as used by today's major cloud operators, it rewards tenants proportionally based on the time length that tenants set as deadlines for completing their workloads. This new mechanism is called Usage-based Pricing with Monetary Reward (UPMR). We demonstrate the effectiveness of UPMR both analytically and empirically. We show that UPMR can reduce the CDC operator's energy cost by 12.9% while increasing its profit by 4.9%, compared to the state-of-the-art approaches used by today's CDC operators to charge their tenants

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape
    • …
    corecore