5,625 research outputs found

    Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

    Full text link
    Deep Learning is increasingly being adopted by industry for computer vision applications running on embedded devices. While Convolutional Neural Networks' accuracy has achieved a mature and remarkable state, inference latency and throughput are a major concern especially when targeting low-cost and low-power embedded platforms. CNNs' inference latency may become a bottleneck for Deep Learning adoption by industry, as it is a crucial specification for many real-time processes. Furthermore, deployment of CNNs across heterogeneous platforms presents major compatibility issues due to vendor-specific technology and acceleration libraries. In this work, we present QS-DNN, a fully automatic search based on Reinforcement Learning which, combined with an inference engine optimizer, efficiently explores through the design space and empirically finds the optimal combinations of libraries and primitives to speed up the inference of CNNs on heterogeneous embedded devices. We show that, an optimized combination can achieve 45x speedup in inference latency on CPU compared to a dependency-free baseline and 2x on average on GPGPU compared to the best vendor library. Further, we demonstrate that, the quality of results and time "to-solution" is much better than with Random Search and achieves up to 15x better results for a short-time search

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2
    • …
    corecore